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Introduction

No matter how well a survey questionnaire is designed and no matter how efficient a data
collection procedure is employed, missing values almost always exist in survey data. There are
two main reasons for missing values, survey (or unit) nonresponse and item nonresponse.
Examples of survey nonresponse include when sampled subjects are unable to be contacted;
when sampled subjects refuse to respond altogether; when sampled subjects are found to be
out-of-scope. Examples of item nonresponse include when sampled subjects refuse to answer
certain questions; when sampled subjects are unable to answer certain questions; when
interviewers fail to ask the question or fail to record the answer, when an inconsistent response
is deleted in data editing.

One of the most common methods to compensate for survey nonresponse is through weighting
adjustments; that is, to reassign the weights of the nonrespondents to the respondents.
However, there are some problems with the use of weighting adjustments for dealing with unit
nonresponse (Rubin 1996):

Even in the simplest case of unit nonresponse, where the shared data base of respondents is
fully observed (i.e, there is no item nonresponse), many ultimate users' complete-data
analyses do not allow for sampling weights.

Even with complete-data analyses that can deal with sampling weights, the construction of
intervals and p-values that validly account for the fact that nonresponse adjustments in the
weights are estimated from data are not immediate from complete-data analyses.

With general patterns of nonresponse, special analysis methods need to be developed and
special software needs to be written.

Weighting adjustments are focused on unbiased estimation and are essentially blind to
efficiency concerns.

Given these problems with using weighting adjustments, imputation has become one of the
most popular tools used to solve missing value problems in survey data analyses. The use of
imputation to create complete data can have the following advantages:

Data collectors usually have more inside knowledge about the reasons for the missing
values. This inside knowledge can be used in imputation;

Missing values complicate the data structure, so that more sophisticated statistical tools are
required to conduct analyses. Imputation may ease this difficulty;

Imputation can prevent the loss of information due to deletion of incomplete records if the
statistical methods used (e.g., regression) require complete records;
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Imputation can reduce nonresponse bias in some situations;

Pairwise con-elation matrices computed from incomplete data may not be positive definite.
Imputation can avoid this problem.

The basic objective of imputation is to allow ultimate data users to apply their existing analysis
tools to any data set with missing values using the same command structure and output
standards as if there were no missing data. Most imputation methods such as "complete-case
analysis," "available-case analysis," and "fill-in with means", satisfy this basic objective and so
have a certain appeal. However, it is certainly not enough to just achieve this basic objective.
Another desirable objective is statistical validity: assuming that the ultimate user's complete-data
analysis is statistically valid for a scientific estimand, the answer that results from applying the
same analysis method to an incomplete-data remains statistically valid for the same scientific
estimand assuming the truth of the database constructor's posited model for missing data. This
goal can be achieved through some imputation methods, but cannot be achieved through others.

It is probably a popular misunderstanding that the goal of imputation is to predict individual
missing values. This is popular because of hot deck imputation methods which attempt to find
the best match (donor) for each missing case. A better estimate for each missing value not
necessarily leads to a better overall estimate for the parameters of interest. Here is a
counterexample given by Rubin (1996): suppose we have a coin that, in truth, is biased .6 heads
and .4 tails. This known truth is model A, whereas model B asserts that the coin has two heads.
Using model A for creating imputations (i.e., future predictions) yields a hit rate (agreements
between predictions and outcomes) of .6 x .6 + .4 x .4 = .52, whereas using model B for
predictions yields a hit rate of .6. This does not mean that model B is better than model A for
handling missing values. Filling in missing values using model B yields the invalid statistical

inference that in the future all coin tosses will be heads, clearly inconsistent for the estimand Q =
fraction of tosses that are heads, whereas using model A yields consistent estimates for all such
scientific estimands.

Many imputation techniques and imputation software packages have been developed over the
years. Different methods may work well under different circumstances. It is advisable to
conduct a sensitivity analysis when choosing an imputation method for a particular survey.

This task reviewed about thirty imputation methods and five imputation software packages.
Eleven of the most popular imputation methods were evaluated through a Monte Carlo
simulation study.

This report consists of five chapters. The first four chapters are on methodology discussions
based on our review of numerous papers and books. Chapter 1 describes about thirty most
commonly used imputation methods with brief discussions of their strengths and weaknesses.
The imputation methods used across the national surveys conducted by the National Center for
Education Statistics (NCES) are also summarized in this chapter. Chapter 2 discusses five
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imputation software packages. Nonresponse bias correction via imputation is addressed in
chapter 3. Variance estimation with imputed data and multiple imputation inference is discussed
in chapter 4. Chapter 5 reports the results of the simulation study, which evaluates 11 imputation
methods according to eight evaluation criteria for four types of distributions, five types of missing
mechanisms and four types of missing rates.
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Chapter 1 Imputation Algorithms

Imputation methods are generally classified into two categories: random (also called
stochastic) and deterministic. A deterministic imputation method determines one and only one
possible value for imputing each missing case. Once the imputation scheme is set up, the
imputation result is unique. On the other hand, a random imputation method draws imputation
values randomly either from the observed data or from the predicted distribution. Multiple sets
of imputations can be created to capture the uncertainty between imputations via any random
imputation method. Generally, a random imputation method adds more variability to the
statistics computed from an imputed data set than a deterministic imputation method.

However, in this chapter, we will discuss imputation techniques under five categories:

Simple deterministic imputation
Simple random imputation
Model-based deterministic imputation
Model-based random imputation
Bayesian-related imputation methods

It is easy to see that these five categories are not mutually exclusive; we are using them mainly
for convenience of discussion.

1.1 Simple deterministic imputation method

1.1.1 Deductive imputation

This method deduces missing values from available information, such as similar items in previous
surveys, related items in current surveys, etc. To apply this method, the user needs to find some
deterministic relationship between the missing item and items from other resources. Cold deck is
one deductive imputation method that uses information from previous similar surveys. Generally,
it is impossible to find enough information to impute all missing items in a survey using deductive
imputation, but this method can be used to impute some of the missing variables. Whenever
possible, deductive imputation should be used before any other imputation method because it
provides accurate or approximately accurate imputations for missing cases. However, the
performance of a deductive imputation method completely depends on the available sources.

1.1.2 Overall or cell mean imputation (also called adjusted mean imputation or substitution
method)

This is the simplest but least attractive imputation method. Overall mean imputation uses the
overall sample mean to replace all missing values in the data set. This method can provide
unbiased estimates for the population means or totals only if the missing values are missing
completely at random (MCAR). Cell mean imputation first uses some auxiliary variables to form

4
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imputation cells, and then replaces missing values in each cell with its sample mean. The method
can give unbiased estimates for the population mean or total if the missing values only depend on
the auxiliary variables which are used to construct the imputation cells. However, the distribution
of the data will be distorted substantially and the concentration of all imputed values at the cell
means creates spikes in the distribution. Therefore, quartile estimates will be biased, and the
variances materially underestimated.

If the mean imputation method is used, it is advisable to calculate the variance-covariance
estimates using a denominator of n-m-1 instead of n-1, where n is the sample size and m is the
number of cases missing one or both variables for pairwise covariance estimate calculation. We
will call this strategy the adjusted mean imputation (or substitution) method in this report.

Cohen (1996) suggested another way to adjust variance estimates by imputing more diversified
values for the missing cases. For example, instead of imputing the mean for all the missing

n + r 1
values, Cohen suggested imputing half of the missing values with lir + r 1 Dr and the

r 1

other half with yir r 1 Dr, where r is the number of response values, yr is the mean of

observed values, and D 2 = 1/: -y r) 2 . This type of adjustment will retain the first and
r

second moments as observed.

1.1.3 Deterministic hot deck imputation

Hot deck imputation is one of the most popular imputation methods because it is simple and
intuitively makes sense to many practitioners who do not have a strong statistical background.
Hot deck imputation does not employ any explicit statistical model. Its major disadvantage is
that it can not recover typical values for objects with certain characteristics if no such subject
responds to a survey. Hot deck imputation employs many methods. The following are the most
popular deterministic hot deck imputation methods.

(1) Sequential nearest neighbor hot deck imputation. This method is also called
traditional hot deck imputation. The first step in this method is to use some auxiliary
variables to specify imputation classes. Second, within each imputation class, a single value
such as the class mean or some pre-specified value is assigned as a starting point. Then the
records in the data file are treated sequentially. If a record has a response for the target
variable, that value replaces the previously stored value for its imputation class. If a record
has a missing value for the target variable, it is assigned the value currently stored for its
imputation class.

A major attraction of this method is its computing economy, since all imputations are made
in a single pass through the data file. A disadvantage is that this method may easily give rise

5
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to multiple use of donors, a feature which leads to a loss of precision for survey estimators
(Kalton and Kasprzyk 1982).

(2) Multivariate matching. In this method, donors and donees are matched on several
predetermined auxiliary variables. For each missing case in each matched class, the nearest
donor is chosen for imputation. If no donor is found in a matched class, the class is
combined with other classes to obtain donors.

While this method is not convenient to implement using computer programs, an
approximately equivalent imputation algorithm may be used to replace it. The algorithm first
sorts the data file with the same auxiliary variables, and then imputes the nearest response
value for each missing case. This alternative method is very easy to implement. The donor
and donee will match on all auxiliary variables if such donors are available. Otherwise, it
will automatically find a donor matched on some of the auxiliary variables, which is
equivalent to collapsing the matched classes.

(3) Distance function matching. This method imputes the nearest response value for
each missing case according to some univariate distance function of auxiliary variables,
such as the norm in the multi-dimensional Euclidean space, Mahalanobis distance, the
difference between the predicted values from a regression model, etc.

1.2 Simple random imputation methods

1.2.1 Overall or cell mean imputation with random disturbance

To overcome the underestimated variance typical of the mean imputation method (see section
1.1.2), we may add a small disturbance drawn from a distribution with a mean zero and
variance-covariance matrix equal to the observed variance-covariance matrix. Most often a
normal distribution is used to draw the random disturbance.

1.2.2 Random hot deck method

Random hot deck imputation is one of the most popular methods in practice. It generally
consists of three steps: (1) determine auxiliary variables on which donors and donees will match;
(2) randomly draw imputations from observed data according to the observed frequency
(weighted or unweighted) within each matched class; (3) if a matched class does not have any
observed value, combine that class with other classes and perform imputation based on the
combined imputation classes.

1.2.3 Overall random imputation

Overall random imputation generally refers to drawing imputation values randomly from
observed data using different sampling schemes. The most frequently used scheme is resampling
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with or without replacement. It is one of the easiest methods to implement, because it does not
use any auxiliary variables and will not be able to reduce nonresponse biases.

1.2.4 Approximate Bayesian Bootstrap (ABB)

The ABB method first randomly draws r values with replacement from the r observed values

Yl ,..., Yr to create Yo*bs , and then randomly draws m values with replacement from Yobs as

imputed values for the m missing values in the target variable Y. The ABB method draws
imputations from a resample of the observed data instead of drawing directly from the observed
data. This extra step introduces additional variation, which makes the ABB method
approximately "proper" for multiple imputation according to Rubin's theory (1987). (This
method is called approximately Bayesian Bootstrap because it is approximately equivalent to the
Bayesian Bootstrap described below.)

Similarly to the overall random imputation method, when ABB imputation is performed for the
overall sample, it will not be able to reduce nonresponse biases because it does not use any
auxiliary information. ABB imputation may work well for within-class imputations if the missing

mechanism only depends on the variables used to construct the imputation classes.

1.2.5 Bayesian Bootstrap (BB)

BB imputation consists of two steps: (1) draw r-1 uniform random numbers between 0 and 1,
and let their ordered values be al,...,a r_i; also let a0=0 and ar=1, where r is the number of

observed values; (2) draw each of the m missing values from Yi Yr with probabilities

(a1 ao),(a 2 a 1),...,(1 a r_i) ; that is, independently m times, draw a uniform random

number u, and impute Y, if a1_1 < u (i=1, 2, ..., r).

Rubin (1981) showed that the Bayesian Bootstrap is equivalent to assuming that the prior
distribution of it is the (improper) distribution

KPr(r) = i-r
k=1

where IL = (lri /tic) is the vector of probabilities Pr(Y, = dk ) = 2Vk ,Drk = 1 and

di ,...,dK are all possible distinct values in Yi ,..., Yr . The posterior distribution of it is

poiyobs) K rk

k=1 k

where rk is the number of yi that equals dk, and Ik=i rk = r . The posterior distribution is a (k-

1) dimensional Dirichlet distribution. The BB method first draws a value IL * of 7t from this
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posterior distribution, then independently draw imputations for missing values from among

dl,..., d K using the probabilities in n*.

The difference between ABB and BB is that the underlying parameter of the data, which gives
the probabilities of each component in Yobs, is being drawn from a scaled multinomial with the
ABB rather than from a Dirichlet distribution. Both distributions have the same means and
correlations, but the variances for the ABB method are (1+1/r) times the variances for the BB
method (Rubin 1981).

1.2.6 Within-class random imputation

Random hot deck is a specific within-class random imputation method. Two factors may vary
from one method to another in the within-class random imputation methods: how to form the
imputation classes and how to draw imputations within each class. The three most commonly
used methods for constructing imputation classes are as follows:

(i) Imputation classes are formed using multiple auxiliary variables. Cases matching on
selected auxiliary variables are classified into the same imputation class. The disadvantage
of this method is that, as the number of auxiliary variables increase, the number of
imputation classes can quickly become enormous. This may limit the use of auxiliary
information in the imputation.

(ii) Imputation classes are constructed using regression predicted values from a
multivariate regression model. Cases with close predicted values are classified into the
same imputation class. The use of auxiliary variables is unlimited (at least theoretically so)
with this classification method. This method was used by imputation software PROC
IMPUTE (version 2.0, Wise & McLaughlin, 1992).

(iii) Imputation classes are constructed using the propensity score method (Rosenbaum
and Rubin 1983, 1984). In brief, the idea is to find a single valued function b(X) of the
covariates X, with the property that the desirable properties of classification on X are
inherited by classifying on b(X). As shown by Rosenbaum and Rubin, the best such score
is the function e(X), the propensity given X, defined as the conditional probability of
observing the target variables Ygiven X. Then, the property that the missing mechanism is
independent of Y given X, carries over to independence given the propensity score e(X), so
that the imputation is unbiased. The propensity scores can be estimated through logistic
regression.

ABB and BB (described in sections 1.2.4 and 1.2.5) have already been shown to draw
imputations within each imputation class. The following methods also do so (Gimotty & Brown

1990).
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(i) Resampling using simple random sampling with replacement: Within k-th
imputation class, the imputed value is selected randomly with replacement from a
multinomial distribution with parameter vector p

k
, the observed proportions of all possible

categories. Then, given the observed data, the conditional expected value and conditional

variance of fisk, the proportion estimates of all possible categories based on the imputed

values only, are

E[Ykidata]= p Cov[i 'data] =
1

k

(diag(pkkpT )-
k
pT),

k -k
M

where mk is the number of missing values in k-th imputation class.

Resampling using simple random sampling without replacement: Within k-th
imputation class, each observed value is used only once as an imputed value. However,
when mk>rk, all observed values are used as many times as possible and then a simple
random sample is taken from the observed values without replacement and those values
are used as imputed values for the remainder of the nonrespondents. Here, we only
consider mkrk. In this case, the distribution of the frequencies of the imputed values in
each category is hypergeometric. The conditional expectation given the data is the same as
in (i), whereas the conditional variance-covariance matrix is given by

mkCov[Ykidata]
rk

dtag(p
k
pk )- p-k p

k

T

(iii) Randomized strategy using maximum likelihood estimates: Let the proportion
estimate based on the observed data be p = (p ,k 9 Pik 9. 9p lk)T then the estimated

frequency is M k 10 ( D lk , ,MkP jk, 9MkPlk)T Then category j is assigned as the

imputed value to [mkp Jk] missing cases, which leaves ck = Mk Pik -[MkP
j=1

missing values un-imputed in the k-th imputation class, where [mkp jk] is the largest

integer which is smaller than mk Pik . The imputed values for these remaining missing values

are independently selected from multinomial distribution with parameter vector c*k where

cik = / ck . The conditional expectation of the imputed proportion is the same as

before, but the conditional variance-covariance matrix is given by

Ck
Cov[j3*

k
'data] =

m2
(diag(g; (Gfk )T) ek(Ck)T)-

k
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Method (i) is strictly stochastic and acts to increase the variability of statistics computed from an
imputed data set compared to a deterministic method. Both method (ii) and method (iii) may be
deterministic. Method (ii) is deterministic when the number of observations equals the number of
missing values. Method (iii) is deterministic when mk pik are integers for each imputation class.

However, in general, method (ii) adds more variability than method (iii) and method (i) adds
more variability than method (ii). However, all of them add less variability than the ABB and the
BB imputation methods.

1.3 Model-based deterministic imputation methods

Generally, "correctly" modeling missing data must be the data constructor's responsibility
because he/she typically knows more about reasons for nonresponse and has access to
confidential and detailed information not released for public use. Model-based approaches will
produce more accurate imputations than randomization-based approaches if the model
assumptions are satisfied. But the difficulty with model-based approaches is that those
assumptions are usually unverifiable in practice and therefore it may not be easy to choose an
appropriate model-based imputation approach for a typical survey. A good model-based
approach would work well for a wide range of underlying data distributions and missing
mechanisms.

1.3.1 Ratio imputation

Suppose that an auxiliary variable x closely related to the target variable y is observed on all

rhsample units. Ratio imputation uses yk,
Yx hi as imputed values for the i-th nonrespondent
7rh

in h-th imputation class. This method can be motivated by the fact that yi*,, is the best predictor

under the following "ratio" superpopulation model:

E(y1)= PhXh V(ym)= ah2 Xhi, Cov(ykyki)= 0 ,

provided that the model holds for both the respondents and nonrespondents.

The ratio imputation method may provide very accurate imputations if the missingness of y
mainly depends on a highly correlated auxiliary variable x. But this is a very restrictive
assumption. In practice, missing values are more likely to depend on several auxiliary variables.
Since ratio imputation can use only one auxiliary variable, it is not fully efficient in many

situations. One way around this is to use some auxiliary variables as classification variables, but
this is still not a satisfactory solution to the limitation on the efficient use of auxiliary variables. As
the number of classification variables increase, the number of imputation classes quickly
becomes enormous and then some imputation classes may not have sufficient samples to obtain
fairly accurate ratio estimates.
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1.3.2 Predicted regression imputation

This method uses the predicted values from a regression model as imputations for all missing
cases. The predicted value is the best predictor of the i-th unobserved value yi under the

following super-population model:

E(y,)= a + 13X , V (y) = o-2 , Cov(y y j) = 0

provided that the model holds for both the respondents and the nonrespondents. Predicted
regression imputation may also be performed within each imputation class. The disadvantage of
this method is the shrinkage to the mean phenomenon.

1.3.3 EM algorithm

The EM algorithm (Dempster, Laird, and Rubin 1977) consists of two steps: the E-step
calculates the expectation of the complete data sufficient statistics given the observed data and
current parameter estimates, and the M- step updates the parameter estimates through the
maximum likelihood approach based on the current values of the complete sufficient statistics.
The algorithm then proceeds in an iterative manner until the difference between the last two
consecutive parameter estimates converges to a specified criterion. The final E- step calculates
the expectation of each missing value given the final parameter estimates and the observed data;
this will be used as the imputation value.

Although the EM algorithm can be used to impute each individual missing value, it is more often
used to directly obtain estimates for population parameters. Assuming a normal distribution for
the data, both the expectations of the sufficient statistics in the E-step and the maximum
likelihood estimates of the parameters in the M-step are easy to derive. But it may not be easy
to do so with other distributions. Convergence may be slow and not guaranteed with the EM
algorithm especially with sparse data. If each M-step also requires an iterative process to obtain
the maximum likelihood estimates, the convergence process will further be slowed down. This
method also suffers the shrinkage to the mean phenomenon. The advantage of the EM algorithm
is its stable convergence; that is, iterations always increase the likelihood.

1.3.4 Dear's principal component method (DPC)

The imputation strategy using the principal component method consists of three steps:

(D1) Let R= {r1 } be an nxp missingness indicator matrix for variables X1...X), with n
observations, i.e., ?I.; or 1 according to whether xii is missing or observed. Use all
available cases to calculate the sample mean and variance for each variable, and then
standardize X to Z. Next, use the case-wise-deletion method (delete the whole case if
one variable has a missing value on that case) to obtain the correlation matrix, S.

11
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(D2) Calculate the largest eigenvalue of S, AI, and its associated eigenvector

111 = 0711

(D3) Let the first principal component for the ith case be

Yi =
i=1

so that the points on the first principal component line that are closest to the i-th case
replace the missing variables:

=
nn

.

ff*

=1

=0

Repeat (D3) for all cases with missing variables and convert Z* back to X*.

One desirable property of principal component analysis is that it does not require any
distributional assumptions for its use. However, since the case-wise-deletion method is used to
obtain the correlation matrix S, DPC works poorly for data sets with only a few complete
cases.

1.3.5 General iterative principal (GIP) component method

To avoid the problems mentioned above and make DPC a general purpose method, the
following refinements have been introduced.

(G1) Use all-available-data method to calculate S. If S is non-positive definite, modify it
with the algorithm provided by Huseby, Schwertman, and Allen (1980); or replace all
missing values by the mean and use n-m-1 instead of n-1 as the denominator in the
variance-covariance calculations to obtain S.

(G2) Perform D2 and D3 with S obtained from Gl.
(G3) Recalculate S from the imputed data matrix and repeat G2.
(G4) Cycle iteratively through G3 and G2 until successive imputed values do not change

materially.

1.3.6 Singular value decomposition (SVD) method

Singular value decomposition (SVD) can be used in a simple way to impute data to missing
values (Krzanowski 1988). The method is easy to compute and a description of the steps for
one missing value xi; in X followed:
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(S1) Omit the ith case (row) from X and calculate the SVD of the remaining (n -1)xp data
matrix, denoted by X ' = UDV' with U = {us, } , V = {7,,} and

D = diag{71, c- 1 p) , where U and V are orthononnal matrices (i.e.,

U77 =Fir = 1).

(S2) Omit the jth variable (column) fromX and calculate the SVD of the remaining nx (p-

1) data matrix, denoted by X_ = UDV with U = {list} , V = {7} and

15 = diag{c71, p_1 }.

(S3)Impute for (i, j) th missing case with

t=1

In the case where there is more than one missing value, an iterative scheme can be conducted as
follows: start with any initial imputed values such as the mean, and update each initial imputed
value in turn using S3. The process is then iterated until stability is achieved in the imputed

values.

1.3.7 A comparison of ASM, EM, DPC, GIP, and SVD

Bello (1993) conducted a simulation study to compare the five deterministic imputation
methods: the adjusted mean substitution (AMS), EM algorithm, DPC, GIP, and SVD. In the
study, Bello's two simulation populations are multivariate normal N (p, I) and t-distribution

with 4 degrees of freedom, Tp (4, it, E) , where kt=0 and E=VAV'. Visa randomly generated

orthogonal matrix and A=diag{X 1, X,, }, A = + 0.1 as used by Bendel (1978), where

{(c 0.1p)(1 v) / (1 v P)
w=

c I p 0.1

0 < v < 1

v = 1

and c is the trace of E. Evidently, values of v represent a continuum such that the
interdependence among the variables increases as v decreases from 1 to 0. The variables are
independent when v=1.

Other varying factors are sample size (n), dimensionality (p), interdependence among the
variables (v), and missing rate (y). Missing data are created randomly, which actually results in
the ideal missing mechanism, missing completely at random. The number of Monte Carlo
simulations for each combination of n, p, v, and y was fixed at 100. The mean square error
(Euclidean norm) of the estimators of I over the 100 simulations are used as the main
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comparison criterion. For the estimator of the mean vector, all the imputation methods are
similar since the data are missing completely at random.

The primary findings of Bello's study are as followed:

For multivariate normal distributions:

When the variables are nearly independent (v=0.7) and p<10, the AMS outperforms
the other four regression-like imputation methods. EM algorithm is the second best,
followed by DPC, SVD, and GIP. This is not surprising since the mean imputations are
obtained under the pretext that the variables are uncorrelated.

For p>2, as v0.3, the regression-like imputation techniques show appreciable
superiority over the adjusted mean imputation method.

When the missing rate r0.10 and n becomes large (100), EM is, on the average, the
best technique followed by GIP, SVD, ASM, and DPC.

For multivariate t-distributions:

Although the principal component and singular value decomposition method can be
presumed to be distributional-assumption-free, this does not mean that DPC, GIP, and
SVD are robust to structures in data.

When v=0.7, the imputation methods behave similarly to their normal counterparts.

EMwhich depends on a normality assumptionis running neck-and-neck with the
distributional-free techniquesDPC, GIP, and SVD. When n is sufficiently large (200)
and the variables are strongly dependent (v<0.3) with moderate dimensionality (p=5),
EM outperforms the other imputation techniques. On the other hand, when p=2 and
v=0.3, for any n value, GIP is the most efficient method.

When p increases, n increases, and v decreases, the regression-like methods become
better and better than ASM.

There is insufficient evidence to discredit the use of EM when the data are markedly
deviate from normality especially when p>2 and reasonably moderate-to-high
interdependence exists among the variables. This remark implicitly suggests that
whatever is known to affect EMfor example, outliers may also affect other
imputation techniques as well.

Regarding the computer-time used by these imputation techniques, ASM and DPC are non-
iterative techniques and no special computer-time is required. Among the three iterative
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methods, the convergence rate of EM was observed to be the slowest, followed by SVD,
and then GIP.

Although the performances of the methods are compared based on the artificial assumption,
MCAR, these results can still be used as references.

1.4 Model-based random imputation methods

1.4.1 Draw imputations from predicted distributions

If some information about the type of data distribution is available, imputations can be drawn
from a predicted distribution. This method assumes a distribution for the data and uses the
observed data to estimate the unknown parameters in the assumed distribution. If the
distribution assumption is approximately true, this method will give much better imputations than
any method which draws imputations from observed data. Rubin's example (Rubin 1978) can
illustrate this. Suppose a sample of 1000 units with 500 respondents and 500 nonrespondents.
The 500 respondents look like a half-normal. If we learn from other sources that the population
is approximately normal, then we can use the data of the 500 respondents to obtain the mean
and variance estimates, and draw imputations from the normal distribution with the estimated
mean and variance. This makes it possible to recover the other half of the normal distribution.
Although this is an extremely artificial example, it is possible in real applications that data of
some specific categories are totally or mostly missing. In those cases, methods that draw
imputations from observed data will not be able to recover missing values for those categories,
while drawing imputations from a predicted distribution may be able to recover them. The
disadvantage of this method is that it requires information in order to develop an appropriate
distribution assumption.

1.4.2 Random regression imputation

As stated in section 1.3.2, predicted regression imputation suffers from shrinkage to the mean
phenomenon. Small random disturbances can be added to the predicted values as imputations
to increase variability. The small random disturbance may be drawn using the following methods:

(1) draw a random disturbance from a distribution such as N(0, ci) with mean 0 and

variance 6 obtained from observed data;
(2) draw a random disturbance from respondents' residuals of the regression model;
(3) draw a random disturbance from residuals of those respondents which have

similar values on some selected auxiliary variables to protect against non-linearity and non-

additivity in regression models.
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1.4.3 Ratio with random disturbance imputation

We can add a small random disturbance to the imputed values obtained from a ratio imputation
model (see section 1.3.1) as was done above to the predicted regression imputation. The
random disturbance can be drawn using three methods parallel to those described above.

1.4.4 Modeling non-ignorable missing mechanism

Most imputation methods model the target variable with missing values but not the missing
indicator variable. These methods explicitly or implicitly assume that the missing values occur at
random given the conditional auxiliary variables. Green less, Reece, and Zieschang (1982) try to
model both the target variable and its missing indicator variable for a non-ignorable missing
mechanism which allows the missingness to depend on the target variable itself.

Let Ybe the target variable with missing values, X be the auxiliary variables for predicting Y, R
be the response indicator, and Z be the auxiliary variables for predicting R. X and Z may
overlap. Then the imputation model employed is:

= XJ3 + e; - N(0,0'2)

P(R; = Y, , Zi ) = 1 / [1 + exp( a yY; 3Z, )].

The later equation indicates that the response probability of Ydepends on Y itself. Then the
likelihood for i-th respondent is given by

1 (y,- 0)4 _ 01+ exp(a Y 84) a a

and the likelihood for i-th nonrespondent is given by

1 1 (Y XJ3\
Li = 1_ 1+ exp(a yY 8Z ;) ø .) a aj

The maximum likelihood estimates for a, /3, y, 8 , and a are obtained by maximizing the whole

sample likelihood L =11L, . The solution to this maximizing problem may be found through

the generalized Gauss-Newton algorithm.

We may impute the missing values using the mean of the distribution of Yconditional on

nonresponse, the values of X and Z, and the parameter estimates a, /3, f, S, and S . This mean

can be calculated in a straightforward way using numerical integration:
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1 Y X.fi\dY
Y 1f-: 1 +exp(a-917 84) a aZ = 0) N)

1 1 (IfY X ,P
dY1°' 1

1 + )7Y SZ;) 6 a

Alternatively, to avoid the shrinkage to the mean phenomenon, we may use the following
imputation scheme.

(1) Draw Ei from N(0,1) and a uniform random number 1 from U[0, 1].
1

(2) Calculate f ; = + C i e , and Pr(Ri = 01 , Zi ) =1
1 + exp(-62 0?, a2,

(3) If Pr(Ri = 01 ki ,Z, ) > , impute ki for the i-th missing case; otherwise re-do

(1) and (2).

If the model of the missing indicator variable is approximately satisfied, this method should give
better imputations than usual imputation methods. However, that is an unverifiable assumption in
real applications and the extra model makes it less robust for general imputation purposes. This
method may not be recommended if there is no strong evidence to show that the missing
mechanism is confounded, that is, the missingness of Ydepends on Y itself.

1.5 Imputation methods related to Bayesian theories

1.5.1 Data augmentation

This Bayesian iterative method was proposed by Tanner and Wong (1987). It assumes two
distributions: the distribution of the data and the prior distribution of the parameters. Similar to
the EM algorithm, it consists of two steps: (1) I-step (imputation step) draws imputations for the
missing values from the predicted distribution of the data, using current parameter estimates; (2)
P-step (parameter estimation step) draws parameter estimates from their posterior distribution,
using both the observed and imputed data. To start this iterative process, we may use the EM
algorithm to obtain initial parameter estimates for the first I-step.

Schafer's software (Schafer 1997) implements this method using models for continuous data,
categorical data, and mixed continuous and categorical data.

For continuous data, this software assumes a multivariate normal distribution for the data,
and a nomial prior for the mean parameters and a normal-inverted Wishart for the variance-
covariance parameters.
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For categorical data, this software assumes a multinomial distribution for the data and a
Dirichlet prior distribution for the parameters. In cases where the number of parameters
becomes enormous, the software imposes loglinear constraints (Bishop, Fienberg, and
Holland 1975) on the parameters.

For mixed continuous and categorical data, the software employs a general location model
(011cin & Tate 1961). It assumes multinomial distribution for the categories defined by the
categorical variables. Within each category, the continuous variables are assumed to have
multivariate normal distribution. The prior for the parameters in the multinomial distribution is
Direchlet and that for the parameters in the multivariate normal distribution is Jeffrey's non-
informative prior. To reduce the parameters, a loglinear constraint can be imposed on the
multinomial parameters and a linear constraint on the mean parameters of the multivariate
normal distribution.

The data augmentation procedure approximates the actual posterior distribution of the
parameter vector by a mixture of complete data posteriors. Their method of constructing the
complete data sets is closely related to the Gibbs sampler (Geman and Geman 1984). This
method efficiently uses relationships among variables for constructing imputations. It generally
gives both good point estimates and variance estimates if the distribution assumptions on the
data are approximately satisfied. Under simple random sampling, the data augmentation method
provides "proper" multiple imputations in the sense of Rubin (1987). The disadvantage of the
data augmentation method is that it requires iterations and, similar to the EM algorithm,
convergence can be slow.

1.5.2 Adjusted data augmentation

If the distribution assumption in the data augmentation method is in question, it is desirable to let
the observed data Yobs influence the shape of the distribution of values imputed for Ymis. Rubin
and Schenker (1986) adjusted the normal model implemented in Schafer's software as follows.
First, the parameters ti* and a *2 are obtained in the same way as in the data augmentation

method. Second, the components of m-dimensional vector X = (X, ,..., X,,,) are drawn with

replacement from the observed data Yobs. Under repeated draws from Yobs, the standardized

variable

4 = (Y, yr)/ (r 1)s I r

has expected value 0 and variance 1. Finally, the m missing values Ymis are imputed using

+ a* 4, i=1, 2, ..., m.
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1.5.3 Sequential imputation method

Kong, Liu and Wong (1994) propose a sequential imputation procedure that involves imputing
the missing data sequentially. According to the authors, in many applications the sequential
imputation method can work well without the need for iterations.

To describe the method, let 0 be the parameter vector of interest and Ybe the complete data.
Suppose the complete-data posterior distribution p(19/ 1) is simple. Suppose the real data Ycan
be decomposed into

Y=

(YI` f(Yri,Yn,u)\

Yt (Y, , Ym, )

O'n f ,(Yrn9Ymn)i

= (Yr, )

where Ytt and Ymt (t=1, 2, ..., n) are the response and nonresponse variables in the t-th
observation. The missing variables may be different for different observations. The main goal is
to find the posterior distribution p(0 I Yr):

p(01Yr) = f p(01Y)p(Ym1Yr )dYm = Ey.iy,[p(61Y)].

If we can draw M independent copies of Ym's from the conditional distribution p(Ym Y), then
1

we can approximate the posterior distribution p(0 I Yr) by
M P(0) Y(j)) 'where

J=1

Y(j) = (Y,.,Y,,,W) and Ym(j) is the j-th imputations for the missing part Ym. However, drawing

imputations directly from conditional distribution p(Ym Y) is usually difficult. The Gibbs sampler
or the data augmentation procedure do this approximately by iterations.

The sequential imputation method achieves something similar by imputing the Ymt's sequentially
and using importance sampling weights to avoid iterations. The sequential imputation starts by

drawing Yt:i frompffm l Yrd and computing wi=p(Yri). Then for 1=2, n, the following two

steps are done sequentially,

(1) Draw Ymf* from the conditional distributionp(Y,, I Yri , Y:1, , Yr,t-19);:,t-I,Yrt) ;

(2) Compute the predictive probabilities p(Yr, Yri Y,,,_,) and

= wt-1. P(YrtlYr19Ym*I9-9Yrt-19Ym* t-i)
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Let w= wn, so that

w =

n

1=2

Both steps are required to be computationally simple, which is often the case if the predictive
distributions p(Yd and p(Y, ) are simple. This is the key to the feasibility of sequential

imputation.

We can independently repeat the above process M times to draw M sets of imputations and
weights, denoted as Y: (j) and w(j) respectively (j=1, 2, ..., M). Then the posterior

distribution p(e Y) is estimated by

M

w(i)p(elYr

which is easy to compute under the assumption that the complete-data posterior is simple,

w h e r e W = w( j) .

(1.2)

To understand why (1.2) is the appropriate approximation, we note that each independent
imputation Yn*, (j) is not drawn from the actual conditional distribution p(Ym/ Yr), but from the

"trial density"

n

P* Yn* ) = IT: I Yr' )np(Kulyr.,K*,.,...,yr,t_.,y:,_., Kt)
t=2

Using standard results from importance sampling, we should use weights

(j)
PV: (AY )

w .

P
.

0)1Yr)

P(Y,;(l), Yr)

P(1c,(j),Yr)

P( Yr)

P(YrI)

p(YrI)

P(Yri,YL(j))U

n

P(Yr) t=2

AYH )121P(Yn Yr,t-1,Yrt:1U),,K,t-1(i)) = W(i)
P(Yr) t=2 P(Yr

which is proportional to w(j) since p(Y) is the same for all M imputations. This implies w(j)
(j=1, M) are correct weights and (1.2) is an appropriate approximation.

In sequential imputation, it is generally desirable to have the trial distribution p*(Yn,/ Yr) as close
to the true distribution p(Yrni Yr) as possible. This usually means that the complete cases should
be processed first, and the other cases should be processed in order of increasing missingness
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so that missing values are imputed conditioned on as many of Yr as possible. One advantage of
sequential imputation is that this method can impute data sequentially even when the data are
collected at different times, for example, in medical studies.

In situations where we want to compare models, it will be important to get the likelihood of
different models. For a particular model Hthe likelihood of H given incomplete data Yr is

P H (Yr) = fp(Yrie)gll(0)de.

Suppose that we have applied sequential imputation based on model H. Then for all j we have

1= EP.[ws (A= EP .[w(l) I P(Y01

which implies E
P
.[w(j)]= p(Y,.) . Therefore,

1 m
13(17,- ) = --m-Y, w(i)

is an unbiased estimate of the likelihoodp(Y) for the imputation model.

In summary, sequential imputation has three advantages over the data augmentation: (1) it does
not require iterations; (2) it can directly estimate the model likelihood; (3) it can cheaply perform
sensitivity analysis and influence analysis. However, it requires that p(Yd, p(Y,1Y, ,..., Y,_, ) , and

p(0/ 19 are all simple. Otherwise, it may be not feasible to implement the sequential imputation
method. This is a very restrictive condition.

1.6 Imputation practice across NCES surveys

The following surveys conducted by the National Center for Education Statistics over the years
used some method to impute for item nonresponse:

Universe Surveys

(1) Common Core of Data (CCD, conducted annually)
(2) Private School Universe Survey (PSS, conducted biennially)
(3) Integrated Postsecondary Education Data System ( IPEDS):

Institutional Characteristics (IPEDS -IC, conducted annually)
Fall Enrollment (IPEDS -EF, conducted annually)
Completions (IPEDS-C, conducted annually)
Financial Statistics (IPEDS-F, conducted annually)
Salaries, Tenure and Fringe Benefits of Full-Time Instructional Faculty (IPEDS-SA,

conducted annually)
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Fall Staff (IPEDS-S, conducted biennially)
Academic Libraries (IPEDS -L, conducted biennially)

Sample Surveys

(1) Schools and Staffing Survey (SASS, conducted in 1987-88, 1990-91, 1993-94)
(2) SASS Teacher Follow-up Survey (SASS-TFS, conducted in 1988-89, 1991-92, 1994-

95)
(3) National Household Education Survey (NHES, conducted in 1991, 1993, 1995, 1996)
(4) Recent College Graduates Survey (RCG, conducted in 1976, 1978, 1981, 1985, 1987,

1991)
(5) National Study of Postsecondary Faculty (NSOPF, conducted in 1988 and 1993)
(6) National Assessment of Education Progress (NAEP, conducted biennially since 1980 and

annually from 1969 to 1980)
(7) Third International Mathematics and Science Study (TIMSS, conducted in 1995)
(8) National Postsecondary Student Aid Study (NPSAS, conducted at 3-year intervals since

1986-87)

Fast Response Surveys

(1) Fast Response Survey System (FRSS; "College-Level Remedial Education in the Fall of
1989," conducted in 1990)

(2) Postsecondary Education Quick Information System (PEQIS; "Deaf and Hard of Hearing
Students in Postsecondary Education," conducted in 1993)

Imputation methods used across these surveys are presented in table 1.6.1.
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Table 1.6.1Imputation methods used across NCES surveys

Survey Imputation Methods Used
CCD Ratio imputation and adjustment

PSS Sequential hot deck, ratio adjustment, deductive imputation
IPEDS-IC Ratio imputation, mean imputation
IPEDS-EF Ratio imputation, mean imputation, raking method
IPEDS-C Cold deck imputation, ratio imputation, raking method, mean imputation
IPEDS-SA Within-class ratio imputation, within-class mean imputation
IPEDS-F Ratio adjusted cold deck imputation, sequential hot deck imputation
IPEDS-S Ratio adjustment cold deck imputation, hot deck imputation
IPEDS-L Logical imputation, ratio adjustment
IPEDS-ALS Cold deck imputation, ratio imputation
NSOPF PROC IMPUTE, sequential hot deck
SASS Sequential hot deck, deductive imputation
SASS-TFS Sequential hot deck, deductive imputation
RCG Hot deck, within-class random imputation, deductive imputation
NHES Hot deck, manual imputation
NPSAS Hot deck, regression imputation, deductive
NAEP Multiple imputation based on Bayesian models*
TIMSS Multiple imputation based on Bayesian models*
FRSS Sequential hot deck imputation, mean imputation, and median imputation
PEQIS Sequential hot deck imputation, ratio adjustment
* Multiple imputation techniques were applied to create plausible values for performance scores based on
Item Response Theory.
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Chapter 2 Imputation Software Products

2.1 PROC IMPUTE (See 1.2.6 Within-class random imputation)

PROC IMPUTE is an advanced imputation software created by American Institutes for
Research (AIR) under a contract with NCES. It is a stand-alone FORTRAN program and only
works with ASCII data files. The software is in the public domain and users can obtain a copy
through NCES.

PROC IMPUTE is a regression-based distributional estimation procedure that is believed to be

more general and to produce more accurate results than a standard hot deck procedure (AIR,

1980). It considers each variable on the file in turn as a "target" variable whose missing values

are to be filled in, and it uses information on other variables to minimize the error in imputing

each target variable. PROC IMPUTE uses three steps that are similar to those used in hot deck

procedure to impute each target variable:

(1) It uses stepwise regression analysis to find the best combination of predictors

for each target variable;

(2) It creates homogeneous cells (imputation classes) of records which have close

predicted regression values;

(3) It imputes each missing record in a given cell with a weighted average of two

donors which are drawn from its own cell and its adjacent cell, respectively,

with probability proportional to the observed frequencies within the two cells.

The weighted average value is rounded to an integer if the integer flag is set for

the target variable.

The software also automatically creates missing data flags for each variable with a value of "I"

for imputed values, "R" for reported values, and "A" for skip missing values.

Since PROC IMPUTE involves ordinary multivariate regression analysis, it only works for

continuous and dichotomous variables. Polytomous variables need to be recoded into

dichotomous variables before running PROC IMPUTE.

PROC IMPUTE can incorporate about 30 variables in one imputation model. A large data set

needs to be divided into several subsets and each subset is imputed via a separate imputation

model. Some key variables may be included in all imputation models. Note that PROC

IMPUTE does not need to be run multiple times to impute a large data set because of the batch
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run feature of PROC IMPUTE: one batch run can handle all the data no matter how large the

data set is.

PROC IMPUTE has two other important features. First, it can create as many as nine sets of

imputations. Although it is not "proper" according to Rubin's multiple imputation theory (Rubin

1987), results of our simulation study (described in chapter 5) show that, in many situations,

PROC IMPUTE provides better multiple imputation variance estimates than some "proper"

methods. Second, it can perform within-class imputations through a "BY" statement which is

parallel to a SAS "BY" statement. This feature is useful for stratified data where the user may

want to perform imputations within each stratum. It is also convenient for Monte Carlo

simulations where multiple data sets need to be generated so that the average performance over

replications can be assessed. Using a "BY" statement with a data set identification variable, all

data sets can be imputed through one run of PROC IMPUTE.

2.2 Schafer's imputation software (See 1.5.1 Data augmentation under Imputation methods
related to Bayesian theories)

Dr. Joseph Schafer of Pennsylvania State University developed this public domain software.
The original version was written using S-PLUS functions and FORTRAN subroutines and ran
under an S-PLUS environment. The current menu-driven version for Windows was written in
FORTAN 90. It only works with ASCII data files in which a numeric value is used to represent
a missing value. It will not work if a "." is used as a missing value in the ASCII files.

Schafer's imputation software (Schafer 1997) applies the data augmentation method. Like the
EM algorithm, it consists of two steps: (1) the /- step (imputation step) draws imputations for the
missing values from the predicted distribution of the data given current parameter estimates; (2)
the P-step (parameter estimation step) draws parameter estimates from their posterior
distributions given both the observed and imputed data. To start this iterative process, the EM
algorithm or ECM algorithm (Meng and Rubin 1991) may be used to obtain initial parameter
estimates for the first /-step.

The software consists of three modules using different statistical models for continuous data, for
categorical data, and for mixed continuous and categorical data.

(1) For continuous data, the software assumes a multivariate normal distribution for the
data, and a normal prior for the mean parameters and a normal-inverted Wishart for
the variance-covariance parameters. Under these assumptions, the posterior
distributions of the mean parameter and the variance-covariance parameters are
multivariate normal and normal-inverted Wishart, respectively. Therefore, P-steps
draw parameter estimates from these posterior distributions and /-steps draw
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imputations for missing values from their predictive normal distribution with updated
parameter estimates obtained in the P-steps.

(2) For categorical data, the software assumes a multinomial distribution for the data and
a Dirichlet prior distribution for the parameters. Under this saturated multinomial
model, the posterior distribution of the parametersthe cell probabilitiesis also a
Dirichlet distribution. However, as the number of categorical variables increase, the
number of cells formed by the variables quickly becomes enormous. In these cases,
the software imposes loglinear constraints (Bishop, Fienberg and Holland 1975) to
reduce the number of parameters for estimation. For these constrained loglinear
models, a Bayesian Iterative Proportion Fitting algorithm (Gelman, Rubin, Carlin and
Stem 1995) is used to simulate the posterior distributions for the parameters.

(3) For mixed continuous and categorical data, the software employs a general location
model (011cin and Tate 1961). It assumes multinomial distribution for the categories
defined by the categorical variables. Within each category, the continuous variables=
are assumed to have multivariate normal distribution. The prior for the parameters in
the multinomial distribution is a Direchlet distribution and that for the parameters in the
multivariate normal distribution is Jeffrey's non-informative prior. In cases where the
number of parameters becomes enormous, a loglinear constraint can be imposed on
the multinomial parameters and a linear constraint on the mean parameters of the
multivariate normal distribution.

2.3 IRMA

Imputation Run Manager (IRMA) is a public domain software developed by Synectics for
Management Decisions, Inc., under a contract with NCES. User permission can be obtained
through NCES.

IRMA is designed to supply a variety of imputation techniques to the users. The current version
of IRMA was built using Microsoft Visual Basic and includes two imputation techniques: 1)
PROC IMPUTE and 2) Schafer's Imputation Software. IRMA preserves all the nice features
of PROC IMPUTE and Schafer's Imputation Software and provides some enhanced features.
For instance, while PROC IMPUTE and Schafer's Imputation Software only work with ASCII
files, IRMA works with SAS, SPSS, and ASCII data files. Another enhancement allows the
unimputed input data file and the imputed output data file to be of different types. For example,
the input file can be a SAS file, but the user can require IRMA to output the imputed file in
SPSS format, or in both SPSS and SAS formats. More imputation methods will be added to a
future version of IRMA.
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2.4 GEIS and GES

Generalized Edit and Imputation System (GEIS) and Generalized Estimation System (GES)
were developed by Statistics Canada. GEIS performs data editing and imputation functions
while GES constructs point estimates and variance estimates using a number of different
estimation modules. The software is a SAS-based application which runs under a SAS
environment. Data must be either in SAS format or in ASCII format with fixed field positions. A
site license for GEIS and GES costs $20,000 (CDN), and there is a $2,000 yearly maintenance
fee.

The imputation methods used in this software are nearest neighbor hot deck, current ratio,
current mean, previous value, previous mean, and auxiliary trend, which are the key methods
used by Statistics Canada for imputation of survey missing data. All of these are single and
deterministic imputation methods and therefore suffer the disadvantage of deflating the variance
estimates.

2.5 SOLAS for Missing Data Analysis 1.0

This commercial product was developed by Statistical Solutions Limited. A single user license
costs $995 for commercial purposes and $795 for academic purposes.

Imputation methods used in this software include: (1) Group Mean Imputation, which replaces
missing values with the cell means of the sample; (2) Last Value Carried Forward (Sequential
Hot Deck), in which the last observed value is used to fill in missing values at a later point in the
study; and (3) Nearest Neighbor Hot Deck Imputation, in which missing values are replaced
with values taken from the closest matching respondents. Multiple imputations can also be
created by this software. These imputation methods are not very attractive for the purpose of
statistical inference. Any statistician with some programming skill can easily implement these
imputation algorithms. However, SOLAS can do more than imputation. It can also perform
many standard statistical analyses based on imputed data, including descriptive analysis, cross-
tabulation, statistical tests (t and non-parametric), ANOVA, regression, BMDP survival
analysis.
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Chapter 3 Nonresponse Bias

Nonresponse bias is the bias of a survey estimate due to the difference between respondents
and nonrespondents. It is one of the most important issues concerning survey data analysts. It is
desirable to eliminate nonresponse bias through imputation and/or estimation methods. One way
is to construct a so-called restoring estimator, defined by Rancourt, Lee, and S mdal (1994)
as:

Given the sample S, if the conditional expectation of the difference between an imputation
estimator r and the complete data estimator .Ts equals to 0, i.e., E(.i,* ysIS) = 0,

where the expectation is over the response mechanism and the imputation model, then r

is called a restoring estimator.

This actually is equivalent to the "first order proper" estimator defined by Rubin (1996).

If missing values occur completely at random (MCAR)that is, the survey has uniform
response, then the respondents represent the population well and survey nonresponse causes
no bias. However, this ideal missing mechanism rarely exists in real applications.

The most commonly assumed missing mechanism is missing at random (MAR), which may
more appropriately be called missing conditionally at random. MAR requires that
respondents and nonrespondents have no systematic differences given some observed auxiliary
variables (called conditioning variables in imputation literature). One simple example of MAR
is that respondents and nonrespondents within each imputation class formed by some predictive
auxiliary variables both represent random samples from the subpopulation. In this case,
estimates within each imputation class will have no nonresponse biases, and thus the combined
overall estimates will have no nonresponse bias. Therefore, with a missing mechanism MAR,
nonresponse bias can be corrected through imputation by conditioning on the auxiliary variables
that are related to the missing mechanism of the target variable. In real applications, we usually
do not know which auxiliary variables are responsible for the missing values of the target
variable. Thus many imputation pioneers such as Rubin and Little advocate using as many
auxiliary variables as possible to make the missing mechanism as close to MAR as possible.

Different imputation methods use conditioning variables in different ways. Some ways are more
effective than others depending upon the circumstances. Hot deck method uses conditioning
variables as classification or matching variables; regression-type imputation uses conditioning
variables as predictors through a regression model; and the data augmentation method uses the
association between the target variable and auxiliary variables through a Bayesian model. These
are the three most popular ways to use conditioning variables. Generally, hot deck method is the
simplest and most intuitive way; therefore it has been used the most often in past surveys.
However, it may be the least effective way of using auxiliary variables. Due to the efforts of
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Rubin and many of his followers, the data augmentation method is becoming more and more
popular.

The most serious nonresponse bias situation is with confounded missing mechanisms; that is, the
probability that a datum is missing depends on the target variable itself. More formally,
confounded and unconfounded missing mechanisms may be defined as:

Let R be the set of the respondents and S be the whole sample. A response mechanism g(
S) is said to be unconfounded if it is of the form g(RI S) = 01 Xs ); that is, it depends

on the auxiliary variables only, and the response probabilities satisfy P(kE RI S) for all units
kE S. If it depends on y-values as well, then it is called confounded.

An unconfounded missing mechanism will become MAR if all ancillary variables related to
response probabilities are used as conditioning variables. A confounded missing mechanism can
never become MAR.

With a confounded missing mechanism, it is generally impossible to completely eliminate
nonresponse biases unless the confounded missing mechanism is known. Unfortunately, the
missing mechanism is never known in real applications.

Rancourt, Lee, and S mdal (1994) discussed several estimators designed to correct
nonresponse biases for data imputed via a ratio imputation method. These estimates along with
the ratio estimator and the observed-data-based estimator are compared via a simulation study
in terms of bias, MSE (mean square error) and coverage rate for a variety of missing
mechanisms. Their results are summarized as follows.

Suppose that the data have been imputed via the ratio imputation method. The target variable is
y and the fully observed auxiliary variable x is used to impute y. The whole sample S consists of
n units with r respondents and m = n-r nonrespondents. The estimate of the population mean
based on the observed values only is

1 ÷
Y = Yk

k=1

The standard ratio imputation estimate is given by

j TT

Primp = (Iir Yk
Yr
-77 XS ,

n k=1 1=1

where y; represents the imputed value for the j- th missing case, and is is the mean of x over

the whole sample S.
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Under the ideal missing mechanism MCAR, )7r is unbiased and )7,,, is approximately unbiased.

Under unconfounded missing mechanisms where missing probabilities only depend on x , )7, is

generally biased but Tun, is unbiased. If the missing mechanism is confounded, both yr and

are generally biased. Rancourt, Lee, and S mdal suggest using

Vr
X

Trimp = Tir[1+ (1-C
x r

- 1)

to correct the biases for the ratio imputation estimator when the response mechanism is
confounded. When C=1, ythmp becomes the ratio imputation estimator )7,m, . With correction

factor c = Ln/ , it becomes unbiased, but it is obviously unestimable since )7. is not known.
xm xr

The eight correction factors C were considered by Rancourt, Lee, and S mdal (1994):

C, = &' , C, = Ln , C3 = IL" , C4 = 5-72,
xr xs wr WS

and

K, =1 (C; 1)(ft 1), i=1, 2, 3, 4,

where wk corresponding to the rank of xk. The K1 takes into account the correlation between x
and y. The correction factors C1, C3, Ki, and K3 are based on the observed data only, while the
correction factors C2, C4, K2, and K4 are based on the whole sample S. Therefore, for the
convenience of description, y-crimp with C1, C3, Ki, or K3 was called the r-corrected estimate,

while ycrimp with C2, C4, K2, and K4 was called the S-corrected estimate.

In their simulation study, Rancourt, Lee, and S mdal chose

= a +bx,+cx: +ek, E(Ek)= 0, V (Ek)= d'x k

as simulation populations. Different types of populations are formed by setting the constants a,
b, and c to different values:

(1) RATIO: a=0, c=0;
(2) CONCAVE: a=0, c<0 (c= -0.01 in the simulation);
(3) CONVEX: a=0, c>0 (c4.01 in the simulation);
(4) NONRATIO: b>0, c=0.

Three correlation levels pxy = 0.7, 0.8, and 0.9 were obtained by a suitable value of d.

Therefore, a total of 12 populations were considered: three RATIO, three CONCAVE, three
CONVEX, and three NONRATIO with correlation levels 0.7, 0.8, and 0.9, respectively.
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Five missing mechanisms were used in the simulation study:

(M1) Uniform response (MCAR);
(M2) The nonresponse probability is a decreasing function of xk specified as

exp(yxk ). This is an unconfounded mechanism.

(M3) The nonresponse probability is an increasing function of xk specified as

1 exp(yxk) . This is also an unconfounded mechanism.

(M4) The nonresponse probability is a decreasing function of yk specified as
exp(yyk ). This is a confounded mechanism.

(M5) The nonresponse probability is an increasing function of yk specified as
1 exp(yyk) . This is also a confounded mechanism.

The smaller units will be underrepresented in the response set R for (M2) and (M4), while the
larger units will be underrepresented in the response set R for (M3) and (M5). The constant y is
determined such that the average nonresponse rate is equal to one of the values 10 percent, 20
percent, 30 percent, and 40 percent.

The ten estimates were compared in terms of bias, mean square error, and coverage rate of the
95 percent confidence intervals. The primary findings are:

(1) The r-corrected estimators (using C1, C3, K,, K3) performed very poorly since the
correction only used the observed data for x;

(2) For uniform response mechanism (M1), both uncorrected estimators 57, and yin,p have

better performance than the corrected estimators. But the loss is not very severe by
mistakenly using the correction when it is not necessary for uniform nonresponse;

(3) For unconfounded missing mechanisms (M2) and (M3), the ratio imputation estimator
yn,p has the best performances for RATIO, CONCAVE and NONRATIO

populations, while the S-corrected estimators have the best performances for the
CONVEX population;

(4) For confounded mechanisms (M4) and (M5), 55,mp is better than the S-corrected

estimators for CONCAVE and NONRATIO populations, but the S-corrected
estimators are better than ynmp for RATIO and CONVEX populations;

(5) The observed-data based estimatoryr performs poorly for all nonuniform response

mechanisms. All estimators perform poorly for CONVEX populations with the (M5)
response mechanism.
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All in all, the correction to the ratio imputation estimator is not a great success in this study.
Correction with observed data of x (r-corrected estimators) should never be recommended.
We will generally benefit from the S-corrected estimators with CONVEX populations.
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Chapter 4 Variance Estimation and Multiple Imputation

One of the most common criticisms on the use of imputation for missing data is that it leads to
underestimated variances. Generally, deterministic single imputation more seriously
underestimates variances than random single imputation does. Rubin (1987) sees it as a
disadvantage of single imputation that "... the one imputed value cannot in itself represent
uncertainty about which value to impute: If one value were really adequate, then that value was
never missing. Hence, analyses that treat imputed values just like observed values generally
systematically underestimate uncertainty, even assuming the precise reasons for nonresponse are
known." In Rubin's opinion, multiple imputation is needed to obtain "proper" variance
estimates.

However, Rao (1996) cites some disadvantages of multiple imputations:

significantly higher costs of storage and processing of multiple data sets;
general ABB methods for generating proper imputations that accommodate issues of
clustering, stratification, and weighting to compensate for unequal probabilities of selection
are not currently available;
a small number of imputations, m, may result in a low level of precision for the multiple
imputation variance estimator since the between imputation variance based on m-1 degrees
of freedom may be poorly estimated.

This chapter summarizes and discusses three types of variance estimation methods for imputed
survey data. Section 4.1 discusses the method proposed by S mdal (1992) which attempts to
add imputation variances to the overall variance estimates without performing multiple
imputation. Section 4.2 describes the application of jackknife variance estimation methods for
imputed data (Rao1996; Fay 1996). Inference based on multiply imputed data is discussed in
section 4.3.

4.1 Add imputation variance without multiple imputation

S mdal (1992) tries to correct underestimated variances by adding the component of
imputation variance to the sample variance for data imputed via a single imputation procedure.

Suppose U is the population (N units), S is the sample (n units), and R is the respondents (r
units). Denote the true value of the total by t, the estimate based on the complete data by , and
the estimate based the imputed data by 1. (obtained via the same formula as 1). Our interest is

the variance of 1. since I. is the actual estimate used in the inference.

The total error of 1. can be decomposed as

1. t = (1. 1)+ (1 t) =imputation error + sampling error.
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We define the imputation residual as ek = Yk y;, which can not be observed for a unit

k ESR. Then the imputation error becomes /. I = Ewkek
kEs- R

The model-assisted approach considers three different distributions, one is "with respect to the
imputation model" (indicated by 4), the second one is "with respect to the sampling design"
(indicated by 5), the third one is "with respect to the response mechanism, given S" (indicated
by R). The estimator I is overall unbiased in the sense that E4E s E R(i. t) = 0 if two

conditions hold:

(a) order of the expectations can be changed: E4 ESER = EsERE4[IS,R];

(b) imputation residuals have zero model expectation: E4(ek)=0.

Condition (a) is satisfied if the response mechanism is one that may depend on S and on
auxiliary data, but not on the y- values.

The overall variance of an unbiased estimator I. is

V,0, = E4Es E RRI + 1A2 = Eelp EsER V4 Vsam Vimp

where fip = ES 1)2 is the design-based variance of , and v4 = E4 21s,R ] is the

conditional model-based imputation variance. In the above equation, we ignore the cross-
product term. The argument for obtaining the sample variance Ps. and the imputation variance

J7;,p is as follows:

(i) Vsmn : Let Pp be the standard estimator of the design variance for a complete

data set, and P. is the quantity obtained via the same formula for Pp using the

imputed data. Evaluate the conditional expectation E4 (Pp P.p1S,R)=Vdif , and find a

model unbiased estimator for Vd16 which will usually require the estimation of

certain parameters of the model
V

"imp
Find a model unbiased estimator P4 for V4 , which may again require the

estimation of unknown parameters of the model Then P4 is overall unbiased for the

imputation variance Viinp.

Note that the role of Pdif is to correct for the fact that the data after imputation may display

"less than natural" variation. This often happens when the imputed values equal the predicted
value from a fitted regression, that is, "the value on the line". The variation around the line is not
reflected in the predicted value. As shown for the ratio imputation method, if residuals and
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predicted values are used as imputed values, lidti is no longer needed to be added to the

sample variance estimator.

Here is a simple example. Suppose the sample S is drawn with SRSWOR and the response
mean yR is imputed for all missing values. The corresponding imputation model states that

yk = p+ek , w h e r e the Ek a r e uncorrelated e r r o r terms with E 4(ek) = 0 , V4 (ek). cr 2 . Then

t. =

= N2 (11 n-11 1V)Es(yk )7,5)2 I (n-1) a N2 (11 n N)Sy2s

= N2(1 41, (yk YR)2 0-0 N2 (1- )r -1 Sy2RV.p n N R n N n -1

Since E S y2s = E 45y2R E (Pp IS, R) = N2 (11 n -11 N)(n r) 1 (n DE 4'5 y2R

Therefore, = N2 (1 n -11 N)(n m) / (n 1)S y2R is a model unbiased estimator for Vdifi

which gives

Since

Psam = +Vthf = N2 (1 n -11 N)S y2R ,

AT 2

Vimp = E4 (1* i)2 () E4(Es_R(Yk -.TR))2 = 11)2 (n-r)2 E4CYs-R-.TR)2

2 2 2
1 N

=N2 -02[E4.Ts2-R E4.13R2 -E4Ps-R37Rii=(n ) 0-02 Hn r r

=N2(1/r-1 /n)a2

we have Pimp = N2 (1 r -1 1 n)Sy2R . Therefore, Piot = P.m + Vimp = N 2 (1 r 1 I N)Sy2R

The following table shows the contribution of each variance component to the total variance for
SRSWOR using the mean imputation method for three different missingness rates. Note when
the missing rate is 30 percent, the variance based on the imputed value only accounts for 49
percent of the total variance, while the variance due to imputation accounts for another 30
percent. Thus 21 percent of the total variance needs to be added to the sampling variance.
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Table 4.1.1Contribution of each variance component to the total variance for the
SRSWOR sampling with the mean imputation method

Missing rate in percentage Contribution (in percentage) to Vol

100(1-r/n) J.p Pdif Pimp

10 81 9 10

20 64 16 20
30 49 21 30

The analytical formulas for SRSWOR sampling with the ratio imputation method has also been
derived in S rndal (1992).

As a comment on this approach, it is very convenient that imputation variance can be estimated
without performing multiple imputation and , therefore, there is no need for a great deal of
storage space and processing time which multiple imputation requires. The variance estimates
obtained through this method may be more accurate than those obtained through a small number
of multiple imputations since a small number of multiple imputations may lead to poor between-
imputation variance estimation. However, S rndal (1992) only derived analytical formulas for
two simple cases: SRSWOR sampling with the mean and ratio imputation. For a more complex
survey design and/or more complicated imputation algorithms, the derivation is not trivial and
may be impossible. It will be even more difficult to apply the method to nonlinear statistics such
as median, quartile, ratio, etc. Furthermore, this method only takes care of variance estimates. It
seems arduous to adjust for covariance via this method.

To make this method more attractive, random imputation methods should be used instead of
deterministic imputation methods, because deterministic imputation methods not only distort the
distribution of data, but also require extra effort to estimate \Tait:

4.2 Jackknife variance estimation with imputed data

Rao (1996) and Fay (1996) extended the jackknife variance estimation method to imputed
survey data. Rao (1996) discussed the jackknife method for imputed survey data for two
situations: (1) stratified random sampling with ratio imputation and regression imputation; (2)
stratified multistage sampling with cell mean imputation and weighted hot deck imputation. Fay
(1996) applied the jackknife method to imputed data via fractionally weighted imputation.

4.2.1 Jackknife variance estimation with imputed data for stratified random sampling

Rao (1996) expanded the jackknife variance estimation method to imputed survey data
collected with a stratified random sampling design. Let nh be the sample size and Nh be the
population size for the h-th stratum (h=1, 2, . .L). In case of complete data, a design-unbiased
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(p-unbiased) estimator of population mean is given by y = wh yh , where Wh = Nh / I Nh is
h=1

the weight for stratum h and rlh is the h-th stratum sample mean. The jackknife variance

estimator is given by

L nh 1
11.1(7) =I-11

h=1 nh

j7)2

where yih(--1) is the jackknife sample mean obtained by deleting the j -th observation from the h-

th stratum.

In presence of nonresponses, let Arh and Arnh be the sample of respondents and nonrespondents
in that stratum. The jackknife sample mean .7/14Da can be adjusted in the following way: (1)

under deterministic imputation, if a respondent is left out, all the imputed values should be
adjusted by the amount y*Ii-J) yhi , where yh') is the value that one would impute for the i-th

nonrespondent if the j-th respondent is deleted in the h-th stratum; (2) under stochastic
imputation, if a respondent is excluded, each of the imputed values in stratum h should be
adjusted by an average amount E.(-i)ym* E.y*hi, where E. denotes expectation with respect to

the imputation procedure given the donor set and E( -J) is the expectation with respect to the

imputation procedure when the donor set is modified by excluding unit j. Then the jackknife
variance estimator with imputed data is given by

h=1 nh

h h
n 1( n

Nh

n

1=1

where y, = yth, Wh +IA.thyhi)1 nh is the overall sample mean with imputed data.

The following two examples apply this technique to ratio imputation and regression imputation.

Example 1 (ratio imputation). Suppose that an auxiliary variable x closely related to an item y is

observed on all sample units. Ratio imputation uses y h* = rh as imputed values for the i-th
X rh

nonrespondent in the h-th stratum. Under this deterministic imputation procedure, if j-th
respondent is excluded in the jackknife variance estimation, the imputed value will be

hip =(T),(1,7"1-7r(n1))xn,

A stochastic counterpart of ratio imputation adds the donors' residuals to the above ratio

imputed values. Under this imputation approach, E v 1 ih = rh, 7rh, x hi and

E( -nyL (3.h-J)/ic;;)\)ch,) Thus the adjusted imputed values are given by

+(371,-f /7:h xh, (Th / Xhi
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Example 2 (regression imputation). Again assume that x is observed on all sample units. Linear

regression imputation uses y;; = Yrh nrh(Xhi 7,h), where fih is the ordinary least square

regression coefficient based on the respondents in stratum h. Under this deterministic imputation
procedure, when the j-th respondent is deleted in the jackknife variance estimation, the imputed

values will be yZ-f) = )7,f, y) +1.3r(h-j)(x , where ijsr(h-i) is the least squares regression

coefficient when the j-th respondent is deleted.

A stochastic counterpart of regression imputation adds a donor's residual to the above
imputations, where the donor is selected through a simple random sampling. Under this

approach, we have E.(-J)yh*, = hi and E(-i)y,* = .2r(h-j) = 7,Y) 4,(1,-.1)(xh,---fh-1 Thus the

adjusted imputed values are given by yh; + .1; yrh if the j-th respondent is deleted and

remain unchanged if the j-th non-respondent is deleted.

In these two examples, the imputed estimators of mean are approximately design-unbiased
under uniform response within each stratum, as well as design model unbiased under their
super-population models (defined in sections 1.3.1 and 1.3.2). The jackknife variance
estimators are p-consistent, as well as approximately design model unbiased under their super-
population models.

Rao (1996) also discussed jackknife variance estimation for stratified multistage sampling design
with missing data imputed by the class mean imputation method and the weighted within-class
hot deck method. We omit them here because they are parallel to the two examples given
above. Linearized versions of the jackknife variance estimators, which are useful with computer
programs that use the linearization method of variance estimation (e.g., SUDAAN), are also
provided in that paper.

However, as Judkins (1996) pointed out, this jackknife method is essentially a univariate tool
with well behaved extensions only for variables that are either never missing or are missing or
present in whole blocks. It has only been applied to simple statistics such as total, mean or
functions of total or mean under marginal imputation. For more complex statistics, such as
regression and correlation coefficients, marginal imputation often attenuates the association
between variables. Joint imputation from the same donor, called common donor hot deck, may
be used sometimes to alleviate this problem with marginal imputation when a record has several
missing related values. This method preserves bivariate relationships only when both variables
are missing; that is, when there are no partial nonrespondents with respect to the two variables.

4.2.2 Jackknife variance estimation with fractionally weighted imputation

Fay (1996) discussed the application of the jackknife variance estimation method to survey data
imputed through the fractionally weighted imputation (FWI) method. FWI creates one set of
imputations by fractionally weighting m sets of imputations. In general, FWI assigns a weight
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//m to each of the m imputations. If the original analysis is weighted, then the m imputed values
each receive //m times the original weight.

Let A, and Anr be the sample of respondents and nonrespondents, respectively, n be the total
sample size, and r be the number of respondents. For any data imputed via a single imputation
method, the mean may be estimated by

H\r
Tr +[1-- Ynr'

n n

where yr and 5 ,. are the mean of the reported values of the respondents and the mean of

imputed values for the nonrespondents respectively. The standard jackknife variance estimator
is

where

vi =
n 1 In (y(_i) .37)2

n =I

Yj)
1)[n57 y j] if j E Ar

= 11(n 1)[nr yJ] if j E An,

This naïve jackknife variance estimate treats the imputed values as true observed values. Rao
and Shao (1992) modified this jackknife mean by

{1
_[ry, yj + 1(y: + j i (--1) ".Tr] if j E A,

.7(- Da = n 1 te A,

11(n 1)[ny y*J] if j E An,

where 57(-1) = (ryir y j) / (r 1) is the mean of the (r- 1) respondents without jth observation.

This formula reflects that, when a respondent is deleted, each imputed value y: need to be

adjusted by the amount of (prNi) yr) since we only have r -1 respondents for imputation when

jth respondent is left out. For example, for the mean imputation method, the originally imputed
values y: = yr for all ieAnr, and then the adjusted imputed value is 57 (-1) when jth respondent is

left out.

For fractionally weighted imputations, the mean may be estimated by

1 v vm 1
.57(rwi) = + L Y

JE/1., 1=1 M

where y; is lth imputation for jth missing value. The Rao-Shao type jackknife variance

estimate may be constructed by replacing P-Da with
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Fay (1996) claimed that "unlike MI (multiple imputation), the RS (Rao-Shao type) variance
estimator does not use variation among the m different imputed sets....Because the effect of
missing data is incorporated in the variance calculation as a whole, instead of isolated... for MI,
it is generally unnecessary to reference a t distribution to obtain adequate approximation for
construction of confidence intervals" (p. 492).

In some situations, Rubin's multiple imputation (non-proper MI) inference may have inconsistent
variance estimates. A modified version of Rao- Shao type jackknife variance estimate may be
used:

where

and

ir
[E(.7(w) Y (mn) )2VJ(M /)

(Da 2

(M/)
J =1 1= I

1 r
Lgr +37,(-i) 7r)] j c Ar

1E4 I=I
Y 07n -1 (M!)- 1myj1II if j E

1 =1

1 v,
-c-nm _ j E Ar
Y All n-1 iGA.,

)7(MI) f j E Afir

In this jackknife variance estimate, the first sum of squares are usual jackknife terms, and the
second sum of squares are designed to capture the variations usually added by the proper
multiple imputations.

Fay (1996) points out, "FWI resembles MI but may be distinguished by (a) the manner in which
the imputations are made, (b) the procedures to obtain the estimates from the data set, and (c)
the variance estimation and analysis of the resulting data set" (p. 492).

Some anomalies given by Fay demonstrate that MI does not address effectively for some
relatively simple situations. This is not surprising because, as Judkins (1996) pointed out that "
Fay's fractionally weighted imputation (FWI) can be expected to yield true variance no larger
than multiple imputation with the same number of replicates" (p. 508). Based on his finding, Fay
suggests that researchers implement Monte Carlo studies to examine the performance
characteristics of MI to develop a body of systematic evidence before applying it to specific
problems.
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However, Fay's FWI method is subject to the same limitation as the Rao's jackknife described
in the preceding section; that is, it is basically a univariate tool and hard to extend to the
multivariate case. Rubin (1996) further criticizes the limitation of Fay's FWI method: "Fay's
approach is essentially constrained to the special situation where (a) there is the simplest pattern
of nonresponse (i.e., there are respondents with no missing data and nonrespondents with all
outcome variables missing), (b) hot-deck draws (possibly weighted) are made from each
adjustment cell to impute donor values to nonrespondents, (c) there are effectively an unlimited
number of respondent donors in each adjustment cell, and (d) the adjustment cell classification
and design weights are assumed to control adequately for nonresponse biases for all estimands
of interest. Since hot-deck classification is based on observed variables, Fay's approach
implicitly assumes an ignorable nonresponse mechanism, because otherwise (d) is violated" (p.

515).

4.3 Multiple imputation inference

The discussion in this section is based on Rubin (1996).

4.3.1 Objectives of imputations

The basic objective of imputation is to allow ultimate data users to apply their existing analysis
tools to any dataset with missing values using the same command structure and output standards
as if there were no missing data. Certain ad hoc methods of handling missing data, such as
"complete-case analysis," "available-case analysis," and "fill-in with means" satisfy this basic

objective and so have a certain appeal.

The ideal supplemental objective of imputation is that each complete-data statistical tool can be
applied to each incomplete dataset to obtain the same inference as if the dataset had no missing
values. This objective is obviously unachievable no matter what imputation method is used. It is
analogous to saying that the objective of a survey is to obtain the same answer as a complete

census.

A less-ideal achievable supplemental objective could be as follows. Assuming that the ultimate
user's complete-data analysis is statistically valid for a scientific estimand, the answer that results
from applying the same analysis method to an incomplete-data remains statistically valid for the
same scientific estimand assuming the truth of the database constructor's posited model for
missing data. This supplemental goal can be achieved through some imputation methods, but can

not be achieved through others.

Before we discuss multiple imputation inference, let's first clarify the meanings of scientific

estimands and statistical validity.

Scientific Estimands: Quantities of scientific interest that can be calculated in the population
and do not change its value depending on the data collection design used to measure them (i.e.,
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they does not vary with sample size and survey design, or the number of nonrespondents or
follow-up efforts). For example, scientific estimands include population means, variances,
correlations, factor loadings, regression coefficients, but exclude the sampling variance of a
sample mean under a particular sampling plan and the expectation of the complete-data sample
mean when missing values are filled in with zero or the observed sample means.

Statistically Validity. This must be a frequency concept, averaging over randomization
distributions generated by known sampling mechanisms and posited distribution for the response
mechanisms. Bayesian validity is also important, but is far more difficult to achieve in this context
because it requires far more compatibility between the database constructor and the analyst.

First and foremost, to achieve statistical validity for scientific estimands, point estimation must be
approximately unbiased for the scientific estimands, averaging over the sampling and the posited
nonresponse mechanisms. Second, interval estimation and hypothesis testing must be valid in the
sense that nominal levels describe operating characteristics over sampling and posited response
mechanisms. There are two versions of frequentist validity for nominal levels: randomization
validity and confidence validity. Randomization validity means that, for interval estimates, the
actual interval coverage equals the nominal interval coverage, and for tests of hypotheses, the
actual rejection rate equals the nominal rejection rate. Confidence validity means that, for
interval estimates, the actual coverage rate is greater than or equal to the nominal coverage rate,
and for tests of hypotheses, the actual rejection rate is less than or equal to the nominal rejection
rate. Confidence validity is a more generally achievable objective.

To express the concepts in mathematical equations, let X be the array of all background
information fully observed in a population and Ybe the array of outcome information in the
population that is to be sampled in the survey. Q = Q(X, 1) is a scientific estimand. Suppose

is a complete-data estimate of Q with sampling variance consistently estimated by the statistic
U. Then randomization validity with complete-data is equivalent to

E(61X,Y):-,- Q (unbiasedness of point estimate)

and

E(UIX,Y)L-- Var(dX,Y) (unbiasedness of variance estimate).

For confidence validity with complete data, the second condition is replaced by

E(UIX,Y).?. Var(01X,Y).

4.3.2 Multiple imputation inference

The goal of multiple imputation (sometimes also called repeated imputation) is to provide
statistically valid inference in the difficult real-world situation where (1) ultimate users and
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database constructors are distinct entities with different analyses, models, and capabilities, and
(2) there typically is no one accepted reason for the missing data.

Multiple imputation was designed to satisfy both the achievable basic objective and the
achievable supplemental objective stated in preceding sub-section by using Bayesian and
frequentist paradigms in complementary ways: the Bayesian model-based approach to create
procedures, and the frequentist (randomization-based approach to evaluate procedures.

Multiple imputation is based on the following Bayesian results:

P(QIYobs) = P(QIYobynth )POcuslYobs)dynis ,

or in words

(Actual posterior distribution of Q) = AVE (complete-data posterior distribution of Q),

where AVE (complete-data posterior distribution of Q) refers to the average over the repeated
imputations, which are draws from P(Ymisi Yobs), which is the posterior predictive distribution of
missing data given the observed data. About the first two moments, we have:

E (Q1K1u)
E[E(Q1Y0,,s,YmOlYobs]

or in words

(Posterior mean of Q) = AVE (repeated complete-data posterior means of Q)

V (QIYobs) = E[V(Wobs,Y.LAYobs]+V[E(Q1Yobs,Y.01Yobsi.

Suppose that we have m sets of repeated imputations, and the lth (1=1, 2, ..., m) point estimate
and its corresponding variance-covariance estimate based on the lth set of imputed data using
standard formulas are (Q.HU.,1). Then the repeated-imputation estimate of Q is:

Qr = 4, Q./ I m

The associated variance-covariance of an is:

T, =17U., I m+ rn +1 B
m

where Um = im U. / m is the within-imputation variability, and

1

Bm
m-1 1=1E(Q.1-6.)(gi Uni)'

is the between-imputation variability. We expect:
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N(0,7L) ,

where a. =limo and T = lim T..

A "proper" multiple imputation procedure treats (X, Y) and the intended sample (as indicated by
I) as fixed, and deals with the fixed but unknown values of the complete-data statistics ( -0,0 in

the sample as if they were estimands. That is, the randomization distribution critically involved in
the definition of proper multiple imputation is generated by the response mechanism, in which X,
Y, and I are fixed , and the response indicator R is the random variable. That means a proper
imputation must satisfy the followings:

E(01IX,Y ,I) 60

E(TJ--

,Y ,I)EVar(a.IX ,Y ,I)

(4.1)

(4.2)

(4.3)

The definition of proper concerns the situation where "population" equals complete-data
sample, "estimands" equals complete-data statistics (Q, , and "survey design" equals the

posited response mechanism. The criterion is valid frequency inference, and the method for
creating inferences is Bayesian predictive inference using simulated values.

It follows from (4.1)-(4.3) that, if the complete-data inference is randomization-valid and the
multiple imputation procedure is proper, the infinite-m repeated imputation inference is
randomization-valid under the posited response mechanism.

Rubin (1987, chapter 4) presented analytic results, simulation evaluations, and many examples
of proper and improper multiple imputation methods, where the evaluations were all from the
random-response randomization-based frequentist perspective. The trick in many of the
examples of proper imputation was to get the variance condition (4.3) correct, and it was
shown that when drawing imputations to approximate repetitions from a sensible Bayesian
model, conditions (4.1)-(4.3) typically followed automatically. The more straightforward
conditions, (4.1) and (4.2), typically were simple properties of any intelligent imputation scheme
that tried to track the data. An example of a method that does not track the data is "fill in the
mean," which, although it may satisfy (4.1) for Q = y , fails to do so for -0 = s' or for the 25th

percentile, or to satisfy (4.2) for U = s2 /n, etc. Hot deck (bootstrap) and random-draw
regression methods tend to satisfy (4.1) and (4.2) but fail to satisfy (4.3) until a Bayesian,
systematic between-imputation component of variability is added (e.g., via the Bayesian
Bootstrap), to reflect uncertainty in the estimation of population parameters.

A multiple imputation procedure is strongly superefficient for the complete-data statistic Q if,

first, D: and Q estimate the same estimand, that is, the procedure is "first-moment proper" for

: E(a,IX ,Y)=E('QIX ,Y), and second -6 has no larger variance than the complete-data
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estimate itself var(U.. IX, Y) Var(dX ,Y). If the second condition is replaced by

Cov(a,, 61X ,Y) Var(dX ,Y), then it is called superefficient imputation. Strongly

superefficient imputation implies superefficient imputation.

A multiple imputation procedure is confidence proper for the complete-data statistics ( .0,u) if

the imputations are "first-moment proper" for ( .0,u) and

E(FI IX,Y)= E(UIX,Y)

and if R. conservatively estimates the "excess variance" of Q over -0 :

E(B_IX ,Y)Var(a.,IX,Y)Var(611X,Y)

If a multiple imputation procedure is proper for (0, U) it is confidence proper for ( . If the

complete-data inference based on u) is confidence valid and the multiple imputation

procedure is confidence proper for (60,u), then the repeated-imputation inference is confidence

valid no matter how complex the survey design.

According to Rubin (1996), any imputation method that satisfies the validity objective in
generality must not only reflect the underlying response mechanism but must also be a random
draw method. Nonrandom draw methods can be applied in special cases but require special
analysis techniques. Of course, the development of user-friendly appropriate software for
creating multiple imputations and analyzing multiply-imputed data is still badly needed.

Rubin (1996) also advises including all variables in a multiple imputation model to make it
proper in general. If X is correlated with Ybut not used to multiply-impute 1', then the multiply-
imputed dataset will yield estimates of the (X, 1') correlation biased towards zero. Thus, the
danger with an imputer's model is generally in leaving out predictors rather than including too
many, and the advice has always been to include as many variables as possible when doing
multiple imputation. Nevertheless, because problems can occur when the imputer's model
leaves out important predictor variables, the database constructor must include a description of
the imputation model with the multiply-imputed database, so that ultimate users know which
relationships among variables have been implicitly set to zero. This is obviously good advice in
principle, but it may be difficult to do in practice.

4.3.3 Current issues concerning multiple imputation

Rubin (1996) also discussed current issues concerning multiple imputation. The first issue
focuses on its implementation: operational difficulties for the database constructor and the
ultimate user, as well as the acceptability of answers obtained partially through the use of
simulation. The second issue concerns the frequentist validity of repeated-imputation inferences
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when the multiple imputations are not proper, but appear "reasonable" in some sense.
Specifically, Rubin raised four questions and tried to answer them:

(1) Is multiple imputation unprincipled or unacceptable because it uses simulation?

It is critical to remember that multiple imputation does not pretend to create information through
simulated values but simply to represent the observed information this way to make it amenable
to valid analysis using complete-data tools. The extra noise created when using a finite number
of imputations is the price to be paid for this luxury.

With multiple imputation, the simulation is only being used to handle the missing information, with
reliance for handling the rest of the information left to the complete-data method, be it analytic
or simulation-based. Jackknife and Bootstrap use many more simulations. More explicitly,
hundreds or thousands of simulations will be needed for bootstrap or jackknife methods,
whereas as few as five multiple imputations (or even three in some cases) are adequate under
each model for nonresponse. The asymptotic efficiency of the repeated-imputation finite-m
estimate relative to the infinite m estimate is [1 + (y / m)]-112 in units of standard deviations,

which is close to one with realistic fractions of missing information y and modest m.

(2) Is multiple imputation too much work for the user?
(3) Does it take too much work to create proper or approximately proper multiple

imputations?
(4) Can repeated imputations under an appropriate Bayesian model lead to invalid

inferences?

His arguments to these three questions are not very convincing and therefore are not repeated
here. There are no "right" answers to questions (2) and (3). Different people may have different
opinions. Regarding question (4), Fay (1996) seems to give a "yes" answer; that is, it is possible
that multiple imputation under a Bayesian model may lead to invalid inferences.
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Chapter 5 Simulation Study

5.1 Simulation design

The simulation design factors are described as follows.

5.1.1 Distribution

Four sets of variables were generated for the simulation study. The distribution type and name
of each of the variables generated are described below.

(1) Five variables from My, 1) denoted as Norml, Norm2, Norm3, Norm4, NormS
with u =1, ..., 5, respectively;

(2) Five variables from a double exponential distribution denoted as Dexpl, Dexp2,
Dexp3, Dexp4, and Dexp5 with means of 1, 2, 3, 4, and 5, respectively, and variances
equal to 2;

(3) Five variables from mixed normal distributions (i.e., 95 percent N(u, 1) and 5 percent
N(j.e, 32)) denoted as MixNorml, MixNorm2, MixNorm3, MixNorm4, and
MixNorm5 with µ =1, ..., 5, respectively.

(4) Five variables from mixed normal distributions (i.e., 95 percent N(.t, 1) and 5 percent

x2(4) 4 +,u ) denoted as MixNChil, MixNChi2, MixNChi3, MixNChi4, and

MixNChi5 with ,u=1, ..., 5, respectively.

The first three sets of variables were symmetric about their means, while the fourth set of
variables was right skewed. The five variables in each set had means of 1, 2, 3, 4, and 5
respectively. Each set of five variables were correlated with the following correlation matrix:

1 0.9 0.7 0.5 0.3 \

0.9 1 0.8 0.6 0.4

0.7 0.8 1 0.7 0.5

0.5 0.6 0.7 1 0.6

0.4 05 0.6 1

The correlation coefficients between different sets of variables were small.
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5.1.2 Missing mechanism

(1) MCAR: Missing values in variables Norml, Dexp 1 , MixNorml, and MixNChil were
missing completely at random (MCAR);

(2) Tail values more likely missing (unconfounded): Missing values in Norm2
were created with probability of exp(-2., INorm1-11), where X. was determined so that
on average 10 percent, 20 percent, 30 percent, and 40 percent missing values were
generated for the four missing rate categories under study. This was an unconfounded
missing mechanism. Since Norml and Norm2 were positively correlated with
correlation coefficient 0.9, tail values were missing with higher probabilities. Missing
values in Dexp2, MixNorm2, and MixNChi2 were similarly created using Dexp 1,
Mix Norml, and MixNChil;

(3) Large values more likely missing (unconfounded): Missing values in Norm3
were created with probability of exp[-A (Norm2 -2)J, where A, was determined so
that on average 5 percent, 10 percent, 15 percent, and 20 percent missing values
were generated for the four missing rate categories under study. This was an
unconfounded missing mechanism. Since Norm2 and Nomi3 were positively
correlated with correlation coefficient 0.8, large values of Nomi3 were missing with
higher probabilities. Missing values in Dexp3, MixNorm3, and MixNChi3 were
similarly created using Dexp2, MixNorm2, and MixNChi2;

(4) Center values more likely missing (unconfounded): Missing values in Norm4
were created with probability of 1-exp[-A. INorm3-31] , where was determined so
that on average 10 percent, 20 percent, 30 percent, and 40 percent missing values
were generated for the four missing rate categories under study. This was an
unconfounded missing mechanism. Since Norm3 and Norm4 were positively
correlated with correlation coefficient 0.7, center values of Norm4 were missing with
higher probabilities. Missing values in Dexp4, MixNorm4, and MixNChi4 were
similarly created using Dexp3, MixNorm3, and MixNChi3;

(5) Tail values more likely missing (confounded): Missing values in NormS
were created with probability of 1-exp[-A, /Norms -5 /J, where X. was determined so
that on average 10 percent, 20 percent, 30 percent, and 40 percent missing values
were generated for the four missing rate categories under study. This was a
confounded missing mechanism since the probabilities of missing NormS depended on
itself Missing values in Dexp5, MixNorm5, and MixNChi5 were similarly created.

We use the term "one-side missing mechanism" for mechanism (3) and the term "two-side
missing mechanism" for the other four mechanisms for the convenience of description.
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5.1.3 Missing rates

For missing mechanisms (1), (2), (4), and (5), the four types of missing rates were 10
percent, 20 percent, 30 percent, and 40 percent, while for missing mechanisms (3), the
four types of missing rates were 5 percent, 10 percent, 15 percent, and 20 percent.

5.1.4 Imputation methods

(1) Mean Imputation (deterministic): Missing values were replaced with the sample
mean.

(2) Ratio Imputation (deterministic): Missing values in y were replaced by

(3)

Yobs-1
Yr x, +1,

Xobs

where yobs and lobs were the means of the observed values for the target variable and

auxiliary variables respectively. Norml, Norm2, Norm3, and Norm4 served as
auxiliary variables for Norm2, Norm3, Nonn4, and NormS, respectively.

Since the means of the target variables were one more than the means of the auxiliary
variables, we subtracted 1 from the numerators of the ratios and added 1 back to the
final imputed values. This means that we used ratio imputation model E(y-1)= Px

instead of E(y). fir because the later model led to very bad results.

We did not use ratio imputation for Norml since we needed to create a complete
auxiliary variable to start the ratio imputation process. Because missing values in
Norml were missing completely at random, we started with this variable and imputed
its missing values using the mean with disturbance method described in (5) below.

The other three sets of five variables were imputed in the same way as the normal
variables.

Sequential nearest neighbor hot deck method (deterministic): This is also called the
traditional hot deck method. To impute any one of the five variables in each set, the
data were first sorted by the other four variables of that set. The observed mean
served as the starting stored value. Then the sequential imputation process started to
check each record in the sorted data file. If a record had a response for the target
variable, the stored value was updated by this new response value; if a record missed
the target variable, the currently stored value would serve as the imputation value.
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(4) Random imputation method (random): Randomly drew imputations from the
observed values (with replacement).

(5) Mean imputation with disturbance (random): Random disturbances drawn from
N(0, s2) were added to the mean imputation (1), where s2 is the sample variance.

(6) Ratio imputation with disturbance (random): Random disturbances were drawn
from N(0, s2) were added to the ratio imputation (2), where s2 is the sample variance.

(7) Approximate Bayesian Bootstrap (ABB) method (random): First drew r values
randomly with replacement from the observed values Y1 Yr to create rbs, and then

drew m values randomly with replacement from 43, for imputation, where r and m

were the number of observed values and that of missing values.

(8) Bayesian Bootstrap (BB) method (random): First, drew r-1 uniform random
numbers between 0 and 1, and let their ordered values be al,...,ar_i; also let a0=0

and ar=1, where r was the number of respondents. Then, drew each of the m missing
values by drawing from Y1, ,1Yr with probabilities (a, ao) , (a2 a,),..., (1 ar_i);
that is, independently m times, drew a uniform random number u, and imputed Yi if

(11_, < a, (i=1, 2, ..., r).

(9) PROC IMPUTE (random): First, used a stepwise regression approach to find
the best regression equations and then used the predicted regression values to form
the "optimal" imputation classes. Then, for each missing record, two observed values
were drawn and weighted to form the imputation value. One of the two observed
values were drawn according to the estimated distribution of the observed values from
its own imputation class and the other from the nearest imputation class.

(10) Data Augmentation (random): This Bayesian iterative method assumed two
distributions: the distribution of the data and the prior distribution of the parameters.
The imputation process consisted of two steps: (i) /-step: with current parameter
estimates, drew imputations for the missing values from the predicted distribution of
the data; (ii) P-step: with both the observed data and the imputed values of the missing
data, drew parameter estimates from their posterior distribution. To start this iterative
process, we may use the EM algorithm to obtain initial parameter estimates for the first
/- step. Schafer's software was used to implement this method in our simulation. This
software assumes multivariate normal distribution for the data, and normal prior for the
parameters of means and normal-inverted Wishart for the variance-covariance
parameters.
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(11) Adjusted data augmentation method (random): If the normality assumption for
the continuous data in Schafer's software is in question, it is desirable to let the
observed data Yobs influence the shape of the distribution of values imputed for Ymis.

We can accomplish this as follows. First and a'2 were drawn in the same way

from their posterior distributions as in Schafer's software. Then the components of m-
dimensional vector X = (x, ) were drawn with replacement from Yobs. Under

repeated draws from Yobs, the standardized variable

Z, = (X, .1),.) / 4(r /r

had expected value 0 and variance 1. Finally, the m components of Ymis were set
equal to p." + a'Zi, i=1, 2, ...., m.

For each combination formed by the above simulation factors, 200 replicate runs were
performed. We assessed the imputation methods based on their average performance over the
200 replications. The sample size for each replicate data set was 100.

5.2 Simulation results

We compared the imputation methods in terms of bias of parameter estimates (mean, median,
first and third quartiles), bias of variance estimates (single and multiple imputations), coverage
probability, confidence interval width, and average imputation error. Analyses and conclusions
according to each criterion based on the simulation results follow. The detailed simulation results
are presented in tables 5.2.1.1-5.2.7.5.

5.2.1 Bias of population mean estimates

Tables 5.2.1.1-5.2.1.5 present the biases of population mean estimates for the 11 imputation
methods under study. Table 5.2.1.1 combines the four missing rate categories with overall
missing rates of around 25 percent for missing mechanisms (1), (2), (4), and (5), and about 10
percent for missing mechanism (3). The remaining four tables describe the biases for missing
rate categories 10 percent, 20 percent, 30 percent, and 40 percent. The numbers of missing
values for one-side missing mechanism (3) are about half of those for the other four two-side
missing mechanisms.

For symmetric distributions (normal, double exponential, and mixed normal) and two-side
missing mechanisms, the population mean estimates based on the incomplete data are
theoretically unbiased. Therefore, the values in the first three rows in each block except block 3
of tables 5.2.1.1-5.2.1.5 are all pretty close to zero. For these cases, it does not make much
sense to compare the imputation methods in terms of improvement of biases.
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When large values are more likely to be missing, block 3 of table 5.2.1.1 shows that the
negative biases caused by missing values, which are the same as those for the mean imputation
method, are considerable for all four types of distributions although there are only about 10
percent missing values. As the distributions depart further from normal, the biases become more
and more serious. The ratio imputation method, ratio imputation with disturbance method, and
Schafer's software perfectly corrected the biases. PROC IMPUTE and the sequential nearest
neighbor hot deck method improved the biases substantially, but PROC IMPUTE has a
significant advantage over the hot deck method. Since the adjusted data augmentation method
introduces more impact of the observed data and the observed data are biased for missing
mechanism (3), this method results in only slight (negligible) improvement of the biases. All other
imputation methods are helpless with the nonresponse biases because these methods do not use
any auxiliary information from other variables.

We believe that one reason why the ratio imputation method performs so well is because we
used the same variables to create and to impute the missing values for each target variable. The
second reason is the high correlation coefficients (at least 0.6) between the target variables and
the auxiliary variables used by the ratio imputation method. The ratio imputation method is more
sensitive to the model specification because it directly uses the predicted values from the
equations as imputation values. Actually, when we used ratio imputation model E(y)= fix

instead of E(y -1) = fix in our first attempt, the results were worse than any other method.

Later we subtracted 1 from y so that the means of y-1 and x were equal. But this is not a
requirement of the ratio imputation method. It is more natural for many analysts to consider the
model E(y)= fix to impute y with auxiliary variable x rather than E(y-1) fix . Therefore, we

should be very cautious in the selection of ratio imputation models in real applications where the
underlying missing mechanisms and the data distributions are generally unknown.

The fourth row of each block in tables 5.2.1.1-5.2.1.5 present the biases for the right skewed
distribution, the mixer of 95 percent Normal and 5 percent Chi-square. These biases are not
severe when the missing rates are low. As the missing rates increase, the biases become
considerable. For the MCAR missing mechanism, all imputation methods are supposed to
provide unbiased mean estimates. For missing mechanisms (2) and (3), since tail values are
more likely missing and the right side has more tail values with the right skewed distributions, the
mean estimates based on the incomplete data will underestimate the population mean. It is
evident that the biases with the confounded mechanism (5) are much more serious than with the
unconfounded mechanism (2). On the other hand, for missing mechanism (4), when center
values are more likely missing, the estimates based on the incomplete data tend to overestimate
the population mean. But the right skewness will not have as much effect with this missing
mechanism as with missing mechanisms (2) and (5) since center values have much less effect on
the mean estimates than tail values. That is why row 4 of block 4 in tables 5.2.1.2-5.2.1.4 does
not show positive biases. However, the positive biases are substantial in row 4 of block 4 in
table 5.2.1.5 when the missing rate increases to 40 percent.
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We found earlier that ratio imputation with or without disturbance, Schafer's software, PROC
IMPUTE, and hot deck are all very effective in improving the biases caused by missing
mechanism (3). However, the improvement is much less impressive for the biases caused by the
right skewness of the distributions, although these methods can still provide improvement in
most cases when considerable biases exist with the incomplete data. Overall, they are still a little
better than the other methods.
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5.2.2 Bias of variance estimates with single imputation

Tables 5.2.2.1-5.2.2.5 report the relative biases of variance estimates based on the incomplete
data and the data imputed by the 11 methods. The relative biases are defined as:

(Estimated Var) (True Var)
Relative Bias =

True Var
(5.1)

In this formula, we are discussing the variance among the data Var (y, ) , not the variance of the

mean estimates Var(y) , although the relative biases of the two variance estimates are equal for

all the imputation methods. We will use the statement "the variance is 20 percent overestimated"
if the relative bias is 0.20, and say "the variance is 20 percent underestimated" if the relative bias
is -0.20.

For the MCAR missing mechanism, the variance estimates based on the incomplete data are
supposed to be unbiased, which was confirmed by the simulation. It is to be expected that the
mean imputation method seriously underestimates the variances since the data were centralized
by using the mean as the imputed values for all missing cases. One way to correct this
underestimation is to multiply the variance estimates by the factor (tr-1)/(r-1), where n is the
sample size and r is the number of observed values. The other way is to add random variation
to the mean as imputation values as done by the mean with disturbance imputation method.
Actually, the variance estimates based on the incomplete data and those based on the mean with
disturbance imputation method are always approximately equal across all missing mechanisms
and all distributions.

For MCAR, all other methods seem fine except the sequential hot deck method which provides
a few very large variance estimates for the mixed distribution of 95 percent normal and 5
percent Chi-square. For example, the sequential hot deck overestimated the variance by 70
percent and 24 percent respectively when there are 40 percent and 30 percent missing values.
This is probably because some extremely large values were imputed too many times by the hot
deck sequential imputation scheme. Therefore, the sequential hot deck imputation method is
dangerous even for MCAR missing mechanism if extreme values or outliers exist in the
observed data. For other distributions, the hot deck method works well.

For unconfounded missing mechanism (2) where tail values are more likely missing, the
incomplete data shrink to the center and, therefore, the variance estimates based on the
incomplete data are too small. This underestimation is much less serious than for the confounded
missing mechanism (5) where tail values are also more likely missing but the missing probabilities
depend on the target variable itself. For mechanism (2), Schafer's software performs better than
the ratio imputation, which is better than PROC IMPUTE, which is better than the hot deck
method. However, all four methods dramatically improved the negative biases of the variance
estimates. The ratio imputation with disturbance method tends to overestimate the variances.
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Slight improvement has been found with the adjusted data augmentation method. It is evident
and expectable that the BB, ABB, random, and the mean with disturbance imputation methods
all have almost the same variance estimates as the incomplete data, while the mean imputation
method worsens the variance estimates.

For unconfounded missing mechanism (3) where large values are more likely missing, the
incomplete data have shorter range than the complete data; therefore, the incomplete data will
underestimate the true variance. Since the missing rates are always less than 20 percent, the
underestimation of the variances is not severe. Except for one case, all negative biases are
smaller than 11 percent of the true variances. In this cases all imputation methods except the
mean imputation provide fine variance estimates. However, Schafer's software, ratio imputation,
PROC IMPUTE, and the hot deck method still shows some advantage over the other methods.

For unconfounded missing mechanism (4) where center values are more likely missing, the
incomplete data overestimate the variances and so do the random, mean imputation with
disturbance, ratio imputation with disturbance, ABB, and BB methods, while the mean
imputation still underestimates the variances. These methods cannot improve the positive biases
at all. Overall, Schafer's software has the best performance, followed by the hot deck method,
which is followed by PROC IMPUTE, which is followed by the ratio imputation. All four
methods substantially improved the positive biases of variance estimates. The hot deck method
has one bad case in which it overestimates the variance by 23 percent for the mixer of normal
and CM-square when the missing rate is 40 percent, but it is still a significant improvement over
the incomplete data which overestimate the variance by 37 percent. Again, the adjusted data
augmentation method can improve the biases slightly.

For confounded missing mechanism (5) where tail values are more likely missing and the missing
probabilities depend on the target variable itself, the incomplete data underestimate the
variances much more seriously than for unconfounded missing mechanism (2). Again, the
random, mean imputation with disturbance, ratio imputation with disturbance, ABB, and BB
methods do not help at all with the biases. Schafer's software, adjusted data augmentation and
the hot deck method only slightly improve them. PROC IMPUTE only have improvement with
the mixed distribution of normal and CM-square which has much more serious underestimated
variances than the other distributions. For this distribution, PROC IMPUTE is better than
Schafer's software, adjusted data augmentation, and the hot deck method. For this confounded
missing mechanism, the only methods which can substantially improve the biases in variance
estimates are ratio imputation with or without disturbance. These two methods are the only ones
in this study that directly use auxiliary variables to predict missing values. This probably implies

that we may have to use some directly predictive approach such as regression imputation or
ratio imputation to impute missing values if the missing mechanism is confounded; that is, if the

missing probabilities depend on the target variable itself.

In summary, for the MCAR missing mechanism, all imputation methods can provide acceptable
variance estimates except the mean imputation method, which needs to be adjusted with a
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factor of (n- 1)/(r- 1). For unconfounded missing mechanisms, Schafer's software performs best,
and ratio imputation, PROC IMPUTE, and the hot deck method can all improve the biases of
variance estimates dramatically, but the ratio imputation with disturbance method tends to
overestimate the variance. For the confounded missing mechanism, only the ratio imputation
method with or without disturbance substantially improves the biases. The random, ABB, BB,
and mean imputation with disturbance methods are almost equivalent to the incomplete data for
all missing mechanisms, while the adjusted data augmentation method always helps a little, but
never much.
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5.2.3 Bias of variance estimates of population mean with five sets of imputations

Five sets of imputations were created for the eight random imputation methods under study.
Variance estimates based on the five sets of multiple imputations are obtained through Rubin's
multiple imputation theory:

1 (m+i). --E(64,
m m m

(5.2)

where e; and r7, are the parameter estimate and variance estimate, respectively, based on i-th

(i=1, m) set of imputations. The first term in (5.2) is called the within-imputation variability,

and the second term is referred as the between-imputation variability.

Tables 5.2.3.1-5.2.3.5 present the relative biases of variance estimates of population mean
estimates. The relative biases are defined as in (5.1). Multiple imputation variance estimates are
generally larger than single imputation variance estimates since multiple imputation adds the

between-imputation variation.

If the data are missing completely at random, all methods except PROC IMPUTE and
Schafer's software substantially overestimate the variances. For the combined data with about
25 percent missing values, the random, mean with disturbance, ratio with disturbance, and
adjusted data augmentation methods all overestimate the variance by 25 percent to 35 percent,
while ABB and BB methods overestimate the variances by 35 percent to 55 percent. Even with
a 10 percent missing rate, these methods overestimate the variances by more than 10 percent in
most cases. It seems that the second term in (2.2) is too much to add to the variance estimates.
The ABB and BB methods, which introduce more variation than the random method and are
considered "proper" by Rubin (1987), seem to overestimate the variances most seriously.
PROC IMPUTE provides the best variance estimates with this ideal missing mechanism
although it is not "proper" according to Rubin's definition. Its multiple imputation variance
estimates can be considered unbiased. Schafer's software is the second best and it slightly
overestimates the variances.

For unconfounded missing mechanisms (2) and (3) where the incomplete data underestimate the
variances, the multiple imputation variance estimates corrected more negative biases than the
single imputation variance estimates, as expected. PROC IMPUTE and Schafer's software
again have the best overall performance. All other methods except the ratio with disturbance
method produce fine variance estimates. The ratio with disturbance method significantly
overestimate the variances even for these two missing mechanisms when the incomplete data are
more concentrated around the center than the population distribution.

For the unconfounded missing mechanism (4) when center values are more likely missing and
the incomplete data are more diversified than the population distribution, the relative

67

76



performances across the different imputation methods are similar to those for the ideal missing
mechanism (1). PROC IMPUTE works best and provides approximately unbiased variance
estimates, Schafer's software is the second best and slightly overestimates the variances. Other
methods all overestimate the variances; the ABB and BB methods are the worst in terms of bias
of variance estimates.

For confounded missing mechanism (5) when the incomplete data seriously underestimate the
variance, the extra variation introduced by multiple imputation helps reduce the negative biases
of single imputation variance estimates for all methods except the ratio with disturbance
imputation method. The ratio with disturbance imputation method again overestimate the
variances. Except for the mixed distribution of normal and Chi-square, PROC IMPUTE has the
largest negative biases and the ABB and BB methods have the smallest biases, while all the
other methods are close to the ABB and BB methods. For the mixed right-skewed distribution
of normal and Chi-square, PROC IMPUTE has the smallest negative biases; however, all
methods except the ratio with disturbance method still substantially underestimate the variances.

In summary, the ratio with disturbance imputation method always overestimates the variances
for all types of missing mechanisms when between-imputation variation is introduced via multiple
imputations. For this method, the idea of multiple imputation is obviously inappropriate. PROC
IMPUTE seems to have the least between-imputation variation and it provides approximately
unbiased variance estimates for the MCAR and all unconfounded missing mechanisms. The
ABB and BB methods introduce the most between-imputation variation and most seriously
overestimate the variances for the MCAR and missing mechanism (4) when the incomplete data
are more diversified than the true distribution. For these two types of missing mechanisms,
multiple imputation variance estimates of all methods except PROC IMPUTE tend to
overestimate the true variances. For the other missing mechanisms when the incomplete data are
less diversified than the true distribution, introducing between-imputation variation can help
reduce the negative biases of variance estimates except for the ratio with disturbance method.
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5.2.4 Coverage rates

The coverage rate is defined as the ratio of the number of simulation replications in which the
confidence interval estimates cover the true value to the total number of simulation replications.
Tables 5.2.4.1-5.2.4.5 report the coverage rates of the 95 percent confidence interval
estimates covering the true means for the combined missing category and separate missing
categories, respectively.

Schafer's software obviously has the best coverage rates. It has almost perfect rates across the
five missing mechanisms for all missing rate categories. The adjusted data augmentation method
also has almost perfect coverage rates for all missing rate categories and all missing mechanisms
except mechanism (3). This method has fairly low coverage rates for this missing mechanism
when missing rates are higher than 20 percent. The reason is that this method substantially
underestimated the true mean for this missing mechanism. It seems that imputation methods
based on Bayesian theory give better coverage rates under similar conditions, which concurs
with Rubin's point of view.

Ratio and ratio with disturbance imputation methods have great coverage rates for missing
mechanisms (2), (3), and (5) when tail values or large values are missing at higher probabilities.
Although the two methods are not as good for missing mechanism (4) when the incomplete data
are more diversified than the true distribution, they are still acceptable when missing rates are
lower than 30 percent. With 40 percent missing values, the coverage rates of the two ratio
imputation methods are moderately low (from 78 percent for mixed distribution of normal and
Chi-square and 90 percent for the normal distribution). This is because the two methods
significantly overestimate the mean for this missing mechanism, as shown in our bias analyses.

PROC IMPUTE has very good coverage rates except for missing mechanism (5). Some rates
are low for mechanism (5) when missing rates are higher than 25 percent. The sequential hot
deck method is significantly worse than PROC IMPUTE in terms of coverage rates, but it is
better than the other methods which do not use any auxiliary information, especially for missing
mechanism (3). Not much difference has been found among the mean imputation, random
imputation, mean with disturbance imputation, ABB, and BB methods. The coverage rates of
these methods are too low, especially for missing mechanisms (3) and (5), when missing rates
are higher than 20 percent.
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5.2.5 Confidence interval width

A 95 percent confidence interval width was obtained via the distribution of the 200 mean
estimates based on the 200 simulation replications. The lower confidence limit was equal to the
average of the fifth and sixth smallest estimates, and the upper confidence limit was equal to the
average of the fifth and sixth largest estimates. Shorter confidence interval alone does not
necessarily imply a better method. A method which provides shorter confidence intervals with
higher coverage rates is generally preferred because the method is more likely to provide more
concentrated point estimates around the true values.

Table 5.2.5.1 presents the confidence interval widths for the estimates based on the complete
data and the data imputed by the 11 imputation methods. For missing mechanisms (2), (3), and
(5), tail values or large values are more likely missing and the incomplete data are less diversified
than the true distribution, and so are the imputed data. Therefore, the estimates based on the
imputed data tend to have less variation than the complete data, and consequently the
confidence intervals tend to be too short. This tendency can especially be seen in missing
mechanism (5). The readers may need to compare the methods in terms of confidence interval
widths along with the biases of variance estimates discussed in section 5.2.2 and coverage rates
described in section 5.2.4.

On the other hand, for missing mechanism (4), the incomplete data are more diversified than the
complete data, and therefore the estimates based on the imputed data tend to have more
variation. Consequently, the confidence intervals based on the imputed data tend to be too
wide.

Overall, Schafer's software and the adjusted data augmentation method have the shortest
confidence intervals across the five missing mechanism. We also found in the preceding section
that these two methods also gave the best coverage rates except for missing mechanism (3) with
the adjusted data augmentation method. Therefore, the two methods are least likely to provide
bad estimates. The other methods seem not to have substantial advantage over each other in
terms of confidence interval width.
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5.2.6 Bias of quartile estimates

We obtained estimates of median and the first and third quartiles for all imputed data to
investigate how imputation affects the data distribution. Tables 5.2.6.1-5.2.6.3 give the biases
of the first quartile, the third quartile, and the median estimates, respectively, for the combined
missing rate categories.

The mean imputation method is obviously the worst in terms of quartile estimates across all five
missing mechanisms. The data are centralized so that the first quartiles are substantially
overestimated, while the third quartiles are substantially underestimated. The median estimates
are pretty much similar to those of the incomplete data. The only exceptions are the first quartile
estimates for missing mechanism (3) in which the positive biases are very small. This is because
both missing values created via missing mechanism (3) and the means imputed for the missing
values are larger than the first quartiles so that the first quartile estimates based on the imputed
data are very close to those based on the complete data. We will not include this method for
discussion in this section.

For the MCAR missing mechanism, all methods except the mean and the mean with disturbance
imputation methods give fine estimates for all the quartiles. The mean with disturbance
imputation method gives fine estimates for the normal and the contaminated normal distributions,
but it has significantly larger negative biases of the first quartile estimates and significantly larger
positive biases of the third quartile estimates for the double exponential distribution and the
mixed distribution of normal and Chi-square. This implies that the disturbance drawn from

N(0,s02bs) diversified the true data, where sobs is calculated from the observed data from the

double exponential distribution or the mixed distribution of normal and Chi-square.

For unconfounded missing mechanism (2), since the incomplete data are less diversified than the
true distributions, the first quartiles are overestimated while the third quartiles are
underestimated. Five methods Schafer's software, PROC IMPUTE, hot deck, ratio and ratio
with disturbance imputationall substantially reduce the biases of the first and third quartile
estimates compared to the incomplete data. The adjusted data augmentation method has slight
improvement for the third quartile estimates, but no improvement for the biases of the first
quartile estimates. The random, mean with disturbance, ABB, and BB imputation methods do
not improve the first and second quartile estimates compared to the incomplete data. For this
missing mechanism, all methods provide fine median estimates because values are missing
symmetrically at both tails.

For unconfounded missing mechanism (3), since the incomplete data are less diversified than the
true distributions, the first quartiles are overestimated while the third quartiles are underestimated
by the incomplete data. Similar results to those for mechanism (2) have been found for the first
and third quartile estimates. The biases of these quartile estimates based on the data imputed by
Schafer's software, ratio imputation, ratio with disturbance imputation, PROC IMPUTE, and
hot deck are at least twice smaller than those based on the incomplete data. Among these five
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methods, hot deck is obviously worse than Schafer's software, PROC IMPUTE, and the ratio
imputation method. All other methods except the mean imputation method have some
improvement over the incomplete data but it is not substantial. For this missing mechanism, the
medians are underestimated by the incomplete data. Schafer's software and PROC IMPUTE
reduce the negative biases by 4 to 50 times, while hot deck, ratio imputation, ratio with
disturbance imputation reduce the negative biases by 2 to 10 times. All other methods reduce
the biases of the incomplete data median estimates slightly.

For unconfounded missing mechanism (4), since the incomplete data are more diversified than
the true distribution, the first quartiles are underestimated while the third quartiles are
overestimated by the incomplete data. The hot deck method has the best overall performance in
terms of biases of quartile estimates, followed by PROC IMPUTE and Schafer's software.
Among these three methods, Schafer's software is best for normal distribution, but much worse
than hot deck and PROC IMPUTE for the mixed distribution of normal and Chi-square. The
other methods do not improve the biases over the incomplete data. Although the ratio
imputation method shrinks the diversified incomplete data, the imputed data are shrunk too
much so that they have less variation than the true distribution. The magnitudes of the biases of
the first quartile estimates are larger than those of the incomplete data, but it is the other way
around for the third quartile estimates. On the other hand, the random imputation, ABB, BB,
and adjusted data augmentation methods have slightly better first quartile estimates but slightly
worse third quartile estimates in terms of bias. All methods except ratio imputation and ratio
with disturbance imputation provide as good median estimates as the incomplete data. Ratio
imputation and ratio with disturbance imputation worsen the median estimates compared to the
incomplete data.

For confounded missing mechanism (5), since the incomplete data are less diversified than the
true distributions, the first quartiles are overestimated while the third quartiles are underestimated
by the incomplete data. The ratio with disturbance imputation method obviously has the best
performance and reduces the biases of the incomplete quartile estimates by two to six times.
Ratio imputation and Schafer's software also improve the quartile estimates over the incomplete
data. The other methods slightly worsen the first quartile estimates while slightly improving the
third quartile estimates. All methods give fine median estimates with this missing mechanism.
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5.2.7 Average imputation error

Average imputation error is defined as

niu: ,
m i=1

where m is the number of missing values, yi is the true value which is intentionally set to missing,

and y: is the imputed value for the i-th missing case. That an imputation method has smaller

average imputation errors only implies that the method provides imputations on average closer
to the real values. This does not necessarily means that it gives more accurate estimates for all
types of statistics, although this is true in many situations.

Tables 5.2.7.1-5.2.7.5 present average imputation errors for the combined missing rate
categories and each separate missing rate category, respectively. The figures in the tables have
been standardized by dividing the true standard deviation from the original imputation errors.

Across all missing mechanisms, the random imputation, mean with disturbance imputation, ABB,
BB, and adjusted data augmentation methods all have the similar imputation errors that are
significantly larger than the imputation errors for the other methods for almost all distributions, all

missing rates, and all missing categories.

The ratio imputation method always has the smallest or close to smallest average imputation
errors. Schafer's software and PROC IMPUTE are competitive candidates. These three
methods have substantially smaller average imputation errors than the others. The hot deck,
ratio with disturbance imputation, and mean imputation methods sit in the middle in terms of
average imputation error. They are significantly worse than the three best methods, but they are
better than the worst five methods. Mean imputation has very small imputation errors for missing
mechanism (4) because center values are more likely missing with this missing mechanism and
the mean imputation method imputes the mean values for them.

It is also noticed that most methods give fairly consistent average imputation errors, while
PROC IMPUTE and hot deck have much larger average imputation errors for the mixed
distribution of normal and Chi-square than they do with the other three distributions for all
missing mechanisms except mechanism (4). This probably indicates that these two methods are
not very good at recovering tail or large missing values.

The relative performance of the imputation methods in terms of average imputation error is very
consistent across the missing rate categories.
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98-15 Development of a Prototype System for Accessing Linked NCES Data

1999-03 Evaluation of the 1996-97 Nonfiscal Common Core of Data Surveys Data Collection,
Processing, and Editing Cycle

2000-12 Coverage Evaluation of the 1994-95 Common Core of Data: Public
Elementary/Secondary School Universe Survey

2000-13 Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of
Data (CCD)

2001-09 An Assessment of the Accuracy of CCD Data: A Comparison of 1988,1989, and 1990
CCD Data with 1990-91 SASS Data

2001-14 Evaluation of the Common Core of Data (CCD) Finance Data Imputations

Data Development
2000-16a Lifelong Learning NCES Task Force: Final Report Volume I
2000-16b Lifelong Learning NCES Task Force: Final Report Volume II

Decennial Census School District Project
95-12 Rural Education Data User's Guide
96-04 Census Mapping Project/School District Data Book
98-07 Decennial Census School District Project Planning Report

2001-12 Customer Feedback on the 1990 Census Mapping Project

Early Childhood Longitudinal Study (ECLS)
96-08 How Accurate are Teacher Judgments of Students' Academic Performance?
96-18 Assessment of Social Competence, Adaptive Behaviors, and Approaches to Learning with

Young Children
97-24 Formulating a Design for the ECLS: A Review of Longitudinal Studies
97-36 Measuring the Quality of Program Environments in Head Start and Other Early Childhood

Programs: A Review and Recommendations for Future Research
1999-01 A Birth Cohort Study: Conceptual and Design Considerations and Rationale Jerry West

Steven Kaufman
Andrew G. Malizio

Aurora D'Amico

Steven Kaufman
Aurora D'Amico
Paula Knepper

Samuel Peng
William J. Fowler, Jr.
Lee Hoffman
William J. Fowler, Jr.
Steven Kaufman
Beth Young

Beth Young

Kerry Gruber

John Sietsema

Frank Johnson

Lisa Hudson
Lisa Hudson

Samuel Peng
Tai Phan
Tai Phan
Dan Kasprzyk

Jerry West
Jerry West

Jerry West
Jerry West
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No. Title
2000-04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and

1999 AAPOR Meetings
2001-02 Measuring Father Involvement in Young Children's Lives: Recommendations for a

Fatherhood Module for the ECLS-B
2001-03 Measures of Socio-Emotional Development in Middle Childhood
2001-06 Papers from the Early Childhood Longitudinal Studies Program: Presented at the 2001

AERA and SRCD Meetings

Education Finance Statistics Center (EDFIN)
94-05 Cost-of-Education Differentials Across the States
96-19 Assessment and Analysis of School-Level Expenditures
97-43 Measuring Inflation in Public School Costs
98-04 Geographic Variations in Public Schools' Costs

1999-16 Measuring Resources in Education: From Accounting to the Resource Cost Model
Approach

High School and Beyond (HS&B)
95-12 Rural Education Data User's Guide

1999-05 Procedures Guide for Transcript Studies
1999-06 1998 Revision of the Secondary School Taxonomy

HS Transcript Studies
1999-05 Procedures Guide for Transcript Studies
1999-06 1998 Revision of the Secondary School Taxonomy

International Adult Literacy Survey (IALS)
97-33 Adult Literacy: An International Perspective

Integrated Postsecondary Education Data System (IPEDS)
97-27 Pilot Test of IPEDS Finance Survey
98-15 Development of a Prototype System for Accessing Linked NCES Data

2000-14 IPEDS Finance Data Comparisons Under the 1997 Financial Accounting Standards for
Private, Not-for-Profit Institutes: A Concept Paper

National Assessment of Adult Literacy (NAAL)
98-17 Developing the National Assessment of Adult Literacy: Recommendations from

Stakeholders
1999-09a 1992 National Adult Literacy Survey: An Overview
1999-09b 1992 National Adult Literacy Survey: Sample Design
1999-09c 1992 National Adult Literacy Survey: Weighting and Population Estimates
1999-09d 1992 National Adult Literacy Survey: Development of the Survey Instruments
I 999-09e 1992 National Adult Literacy Survey: Scaling and Proficiency Estimates
1999-09f 1992 National Adult Literacy Survey: Interpreting the Adult Literacy Scales and Literacy

Levels
1999-09g 1992 National Adult Literacy Survey: Literacy Levels and the Response Probability

Convention
2000-05 Secondary Statistical Modeling With the National Assessment of Adult Literacy:

Implications for the Design of the Background Questionnaire
2000-06 Using Telephone and Mail Surveys as a Supplement or Alternative to Door-to-Door

Surveys in the Assessment of Adult Literacy
2000-07 "How Much Literacy is Enough?" Issues in Defining and Reporting Performance

Standards for the National Assessment of Adult Literacy
2000-08 Evaluation of the 1992 NALS Background Survey Questionnaire: An Analysis of Uses

with Recommendations for Revisions
2000-09 Demographic Changes and Literacy Development in a Decade
2001-08 Assessing the Lexile Framework: Results of a Panel Meeting
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No. Title NCES contact

National Assessment of Educational Progress (NAEP)
95-12 Rural Education Data User's Guide
97-29 Can State Assessment Data be Used to Reduce State NAEP Sample Sizes?
97-30 ACT's NAEP Redesign Project: Assessment Design is the Key to Useful and Stable

Assessment Results
97-31 NAEP Reconfigured: An Integrated Redesign of the National Assessment of Educational

Progress
97-32 Innovative Solutions to Intractable Large Scale Assessment (Problem 2: Background

Questionnaires)
97-37 Optimal Rating Procedures and Methodology for NAEP Open-ended Items
97-44 Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using

State Assessments and State NAEP, Feasibility Study
98-15 Development of a Prototype System for Accessing Linked NCES Data

1999-05 Procedures Guide for Transcript Studies
1999-06 1998 Revision of the Secondary School Taxonomy
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

2001-08 Assessing the Lexile Framework: Results of a Panel Meeting
2001-11 Impact of Selected Background Variables on Students' NAEP Math Performance
2001-13 The Effects of Accommodations on the Assessment of LEP Students in NAEP

National Education Longitudinal Study of 1988 (NELS:88)
95-04 National Education Longitudinal Study of 1988: Second Follow-up Questionnaire Content

Areas and Research Issues
95-05 National Education Longitudinal Study of 1988: Conducting Trend Analyses of NLS-72,

HS&B, and NELS:88 Seniors
95-06 National Education Longitudinal Study of 1988: Conducting Cross-Cohort Comparisons

Using HS&B, NAEP, and NELS:88 Academic Transcript Data
95-07 National Education Longitudinal Study of 1988: Conducting Trend Analyses HS&B and

NELS:88 Sophomore Cohort Dropouts
95-12 Rural Education Data User's Guide
95-14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used

in NCES Surveys
96-03 National Education Longitudinal Study of 1988 (NELS:88) Research Framework and

Issues
98-06 National Education Longitudinal Study of 1988 (NELS:88) Base Year through Second

Follow-Up: Final Methodology Report
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in

Mathematics for High School GraduatesAn Examination of Data from the National
Education Longitudinal Study of 1988

98-15 Development of a Prototype System for Accessing Linked NCES Data
1999-05 Procedures Guide for Transcript Studies
1999-06 1998 Revision of the Secondary School Taxonomy
1999-15 Projected Postsecondary Outcomes of 1992 High School Graduates
2001-16 Imputation of Test Scores in the National Education Longitudinal Study of 1988

National Household Education Survey (NHES)
95-12 Rural Education Data User's Guide
96-13 Estimation of Response Bias in the NHES:95 Adult Education Survey
96-14 The 1995 National Household Education Survey: Reinterview Results for the Adult

Education Component
96-20 1991 National Household Education Survey (NHES:9l) Questionnaires: Screener, Early

Childhood Education, and Adult Education
96-21 1993 National Household Education Survey (NHES:93) Questionnaires: Screener, School

Readiness, and School Safety and Discipline
96-22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early

Childhood Program Participation, and Adult Education
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No. Title
96-29 Undercoverage Bias in Estimates of Characteristics of Adults and 0- to 2-Year-Olds in the

1995 National Household Education Survey (NHES:95)
96-30 Comparison of Estimates from the 1995 National Household Education Survey

(NHES:95)
97-02 Telephone Coverage Bias and Recorded Interviews in the 1993 National Household

Education Survey (NHES:93)
97-03 1991 and 1995 National Household Education Survey Questionnaires: NHES:91 Screener,

NHES:91 Adult Education, NHES:95 Basic Screener, and NHES:95 Adult Education
97-04 Design, Data Collection, Monitoring, Interview Administration Time, and Data Editing in

the 1993 National Household Education Survey (NHES:93)
97-05 Unit and Item Response, Weighting, and Imputation Procedures in the 1993 National

Household Education Survey (NHES:93)
97-06 Unit and Item Response, Weighting, and Imputation Procedures in the 1995 National

Household Education Survey (NHES:95)
97-08 Design, Data Collection, Interview Timing, and Data Editing in the 1995 National

Household Education Survey
97-19 National Household Education Survey of 1995: Adult Education Course Coding Manual
97-20 National Household Education Survey of 1995: Adult Education Course Code Merge

Files User's Guide
97-25 1996 National Household Education Survey (NHES:96) Questionnaires:

Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Youth Civic Involvement, and Adult Civic Involvement

97-28 Comparison of Estimates in the 1996 National Household Education Survey
97-34 Comparison of Estimates from the 1993 National Household Education Survey
97-35 Design, Data Collection, Interview Administration Time, and Data Editing in the 1996

National Household Education Survey
97-38 Reinterview Results for the Parent and Youth Components of the 1996 National

Household Education Survey
97-39 Undercoverage Bias in Estimates of Characteristics of Households and Adults in the 1996

National Household Education Survey
97-40 Unit and Item Response Rates, Weighting, and Imputation Procedures in the 1996

National Household Education Survey
98-03 Adult Education in the 1990s: A Report on the 1991 National Household Education

Survey
98-10 Adult Education Participation Decisions and Barriers: Review of Conceptual Frameworks

and Empirical Studies

National Longitudinal Study of the High School Class of 1972 (NLS-72)
95-12 Rural Education Data User's Guide

National Postsecondary Student Aid Study (NPSAS)
96-17 National Postsecondary Student Aid Study: 1996 Field Test Methodology Report

2000-17 National Postsecondary Student Aid Study:2000 Field Test Methodology Report

National Study of Postsecondary Faculty (NSOPF)
97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists
98-15 Development of a Prototype System for Accessing Linked NCES Data

2000-01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Postsecondary Education Descriptive Analysis Reports (PEDAR)
2000-11 Financial Aid Profile of Graduate Students in Science and Engineering

Private School Universe Survey (PSS)
95-16 Intersurvey Consistency in NCES Private School Surveys
95-17 Estimates of Expenditures for Private K-12 Schools
96-16 Strategies for Collecting Finance Data from Private Schools
96-26 Improving the Coverage of Private Elementary-Secondary Schools
96-27 Intersurvey Consistency in NCES Private School Surveys for 1993-94
97-07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary

Schools: An Exploratory Analysis
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No. Title
97-22 Collection of Private School Finance Data: Development of a Questionnaire
98-15 Development of a Prototype System for Accessing Linked NCES Data

2000-04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and
1999 AAPOR Meetings

2000-15 Feasibility Report: School-Level Finance Pretest, Private School Questionnaire

Recent College Graduates (RCG)
98-15 Development of a Prototype System for Accessing Linked NCES Data

Schools and Staffing Survey (SASS)
94-01 Schools and Staffing Survey (SASS) Papers Presented at Meetings of the American

Statistical Association
94-02 Generalized Variance Estimate for Schools and Staffing Survey (SASS)
94-03 1991 Schools and Staffing Survey (SASS) Reinterview Response Variance Report
94-04 The Accuracy of Teachers' Self-reports on their Postsecondary Education: Teacher

Transcript Study, Schools and Staffing Survey
94-06 Six Papers on Teachers from the 1990-91 Schools and Staffing Survey and Other Related

Surveys
95-01 Schools and Staffing Survey: 1994 Papers Presented at the 1994 Meeting of the American

Statistical Association
95-02 QED Estimates of the 1990-91 Schools and Staffing Survey: Deriving and Comparing

QED School Estimates with CCD Estimates
95-03 Schools and Staffing Survey: 1990-91 SASS Cross-Questionnaire Analysis
95-08 CCD Adjustment to the 1990-91 SASS: A Comparison of Estimates
95-09 The Results of the 1993 Teacher List Validation Study (TLVS)
95-10 The Results of the 1991-92 Teacher Follow-up Survey (TFS) Reinterview and Extensive

Reconciliation
95-11 Measuring Instruction, Curriculum Content, and Instructional Resources: The Status of

Recent Work
95-12 Rural Education Data User's Guide
95-14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used

in NCES Surveys
95-15 Classroom Instructional Processes: A Review of Existing Measurement Approaches and

Their Applicability for the Teacher Follow-up Survey
95-16 Intersurvey Consistency in NCES Private School Surveys
95-18 An Agenda for Research on Teachers and Schools: Revisiting NCES' Schools and

Staffing Survey
96-01 Methodological Issues in the Study of Teachers' Careers: Critical Features of a Truly

Longitudinal Study
96-02 Schools and Staffing Survey (SASS): 1995 Selected papers presented at the 1995 Meeting

of the American Statistical Association
96-05 Cognitive Research on the Teacher Listing Form for the Schools and Staffing Survey
96-06 The Schools and Staffing Survey (SASS) for 1998-99: Design Recommendations to

Inform Broad Education Policy
96-07 Should SASS Measure Instructional Processes and Teacher Effectiveness?
96-09 Making Data Relevant for Policy Discussions: Redesigning the School Administrator

Questionnaire for the 1998-99 SASS
96-10 1998-99 Schools and Staffing Survey: Issues Related to Survey Depth
96-11 Towards an Organizational Database on America's Schools: A Proposal for the Future of

SASS, with comments on School Reform, Governance, and Finance
96-12 Predictors of Retention, Transfer, and Attrition of Special and General Education

Teachers: Data from the 1989 Teacher Followup Survey
96-15 Nested Structures: District-Level Data in the Schools and Staffing Survey
96-23 Linking Student Data to SASS: Why, When, How
96-24 National Assessments of Teacher Quality
96-25 Measures of Inservice Professional Development: Suggested Items for the 1998-1999

Schools and Staffing Survey
96-28 Student Learning, Teaching Quality, and Professional Development: Theoretical

Linkages, Current Measurement, and Recommendations for Future Data Collection
97-01 Selected Papers on Education Surveys: Papers Presented at the 1996 Meeting of the

American Statistical Association
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No. Title
97-07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary

Schools: An Exploratory Analysis
97-09 Status of Data on Crime and Violence in Schools: Final Report
97-10 Report of Cognitive Research on the Public and Private School Teacher Questionnaires

for the Schools and Staffing Survey 1993-94 School Year
97-11 International Comparisons of Inservice Professional Development
97-12 Measuring School Reform: Recommendations for Future SASS Data Collection
97-14 Optimal Choice of Periodicities for the Schools and Staffing Survey: Modeling and

Analysis
97-18 Improving the Mail Return Rates of SASS Surveys: A Review of the Literature
97-22 Collection of Private School Finance Data: Development of a Questionnaire
97-23 Further Cognitive Research on the Schools and Staffing Survey (SASS) Teacher Listing

Form
97-41 Selected Papers on the Schools and Staffing Survey: Papers Presented at the 1997 Meeting

of the American Statistical Association
97-42 Improving the Measurement of Staffing Resources at the School Level: The Development

of Recommendations for NCES for the Schools and Staffing Survey (SASS)
97-44 Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using

State Assessments and State NAEP, Feasibility Study
98-01 Collection of Public School Expenditure Data: Development of a Questionnaire
98-02 Response Variance in the 1993-94 Schools and Staffing Survey: A Reinterview Report
98-04 Geographic Variations in Public Schools' Costs
98-05 SASS Documentation: 1993-94 SASS Student Sampling Problems; Solutions for

Determining the Numerators for the SASS Private School (3B) Second-Stage Factors
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper
98-12 A Bootstrap Variance Estimator for Systematic PPS Sampling
98-13 Response Variance in the 1994-95 Teacher Follow-up Survey
98-14 Variance Estimation of Imputed Survey Data
98-15 Development of a Prototype System for Accessing Linked NCES Data
98-16 A Feasibility Study of Longitudinal Design for Schools and Staffing Survey

1999-02 Tracking Secondary Use of the Schools and Staffing Survey Data: Preliminary Results
1999-04 Measuring Teacher Qualifications
1999-07 Collection of Resource and Expenditure Data on the Schools and Staffing Survey
1999-08 Measuring Classroom Instructional Processes: Using Survey and Case Study Fieldtest

Results to Improve Item Construction
1999-10 What Users Say About Schools and Staffing Survey Publications
1999-12 1993-94 Schools and Staffing Survey: Data File User's Manual, Volume III: Public-Use

Codebook
1999-13 1993-94 Schools and Staffing Survey: Data File User's Manual, Volume IV: Bureau of

Indian Affairs (BIA) Restricted-Use Codebook
1999-14 1994-95 Teacher Followup Survey: Data File User's Manual, Restricted-Use Codebook
1999-17 Secondary Use of the Schools and Staffing Survey Data
2000-04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and

1999 AAPOR Meetings
2000-10 A Research Agenda for the 1999-2000 Schools and Staffing Survey
2000-13 Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of

Data (CCD)
2000-18 Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire

Third International Mathematics and Science Study (TIMSS)
2001-01 Cross-National Variation in Educational Preparation for Adulthood: From Early

Adolescence to Young Adulthood
2001-05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)
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Listing of NCES Working Papers by Subject

No. Title

Achievement (student) - mathematics
2001-05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics

Adult education
96-14 The 1995 National Household Education Survey: Reinterview Results for the Adult

Education Component
96-20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early

Childhood Education, and Adult Education
96-22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early

Childhood Program Participation, and Adult Education
98-03 Adult Education in the 1990s: A Report on the 1991 National Household Education

Survey
98-10 Adult Education Participation Decisions and Barriers: Review of Conceptual Frameworks

and Empirical Studies
1999-11 Data Sources on Lifelong Learning Available from the National Center for Education

Statistics
2000-16a Lifelong Learning NCES Task Force: Final Report Volume I
2000-16b Lifelong Learning NCES Task Force: Final Report Volume II

Adult literacysee Literacy of adults

American Indian - education
1999-13 1993-94 Schools and Staffing Survey: Data File User's Manual, Volume IV: Bureau of

Indian Affairs (BIA) Restricted-Use Codebook

Assessment/achievement
95-12 Rural Education Data User's Guide
95-13 Assessing Students with Disabilities and Limited English Proficiency
97-29 Can State Assessment Data be Used to Reduce State NAEP Sample Sizes?
97-30 ACT's NAEP Redesign Project: Assessment Design is the Key to Useful and Stable

Assessment Results
97-31 NAEP Reconfigured: An Integrated Redesign of the National Assessment of Educational

Progress
97-32 Innovative Solutions to Intractable Large Scale Assessment (Problem 2: Background

Questions)
97-37 Optimal Rating Procedures and Methodology for NAEP Open-ended Items
97-44 Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using

State Assessments and State NAEP, Feasibility Study
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in

Mathematics for High School GraduatesAn Examination of Data from the National
Education Longitudinal Study of 1988

2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

2001-11 Impact of Selected Background Variables on Students' NAEP Math Performance
2001-13 The Effects of Accommodations on the Assessment of LEP Students in NAEP

Beginning students in postsecondary education
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field

Test Report
2001-04 Beginning Postsecondary Students Longitudinal Study: 1996-2001 (BPS:1996/2001)

Field Test Methodology Report
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No. Title NCES contact

Civic participation
97-25 1996 National Household Education Survey (NHES:96) Questionnaires: Kathryn Chandler

Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Youth Civic Involvement, and Adult Civic Involvement

Climate of schools
95-14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used Samuel Peng

in NCES Surveys

Cost of education indices
94-05 Cost-of-Education Differentials Across the States William J. Fowler, Jr.

Course-taking
95-12 Rural Education Data User's Guide Samuel Peng
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in Jeffrey Owings

Mathematics for High School GraduatesAn Examination of Data from the National
Education Longitudinal Study of 1988

1999-05 Procedures Guide for Transcript Studies Dawn Nelson
1999-06 1998 Revision of the Secondary School Taxonomy Dawn Nelson

Crime
97-09 Status of Data on Crime and Violence in Schools: Final Report Lee Hoffman

Curricul urn
95-11 Measuring Instruction, Curriculum Content, and Instructional Resources: The Status of Sharon Bobbin &

Recent Work John Ralph
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in Jeffrey Owings

Mathematics for High School GraduatesAn Examination of Data from the National
Education Longitudinal Study of 1988

Customer service
1999-10 What Users Say About Schools and Staffing Survey Publications
2000-02 Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps
2000-04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and

1999 AAPOR Meetings
2001-12 Customer Feedback on the 1990 Census Mapping Project

Dan Kasprzyk
Valena Plisko
Dan Kasprzyk

Dan Kasprzyk

Data quality
97-13 Improving Data Quality in NCES: Database-to-Report Process Susan Ahmed

2001-11 Impact of Selected Background Variables on Students' NAEP Math Performance Arnold Goldstein
2001-13 The Effects of Accommodations on the Assessment of LEP Students in NAEP Arnold Goldstein

Data warehouse
2000-04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and Dan Kasprzyk

1999 AAPOR Meetings

Design effects
2000-03 Strengths and Limitations of Using SUDAAN, Stata, and WesVarPC for Computing Ralph Lee

Variances from NCES Data Sets

Dropout rates, high school
95-07 National Education Longitudinal Study of 1988: Conducting Trend Analyses HS&B and Jeffrey Owings

NELS:88 Sophomore Cohort Dropouts

Early childhood education
96-20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early Kathryn Chandler

Childhood Education, and Adult Education
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No. Title
96-22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early

Childhood Program Participation, and Adult Education
97-24 Formulating a Design for the ECLS: A Review of Longitudinal Studies
97-36 Measuring the Quality of Program Environments in Head Start and Other Early Childhood

Programs: A Review and Recommendations for Future Research
1999-01 A Birth Cohort Study: Conceptual and Design Considerations and Rationale
2001-02 Measuring Father Involvement in Young Children's Lives: Recommendations for a

Fatherhood Module for the ECLS-B
2001-03 Measures of Socio-Emotional Development in Middle School
2001-06 Papers from the Early Childhood Longitudinal Studies Program: Presented at the 2001

AERA and SRCD Meetings

Educational attainment
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field

Test Report
2001-15 Baccalaureate and Beyond Longitudinal Study: 2000/01 Follow-Up Field Test

Methodology Report

Educational research
2000-02 Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps

Eighth-graders
2001-05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics

Employment
96-03 National Education Longitudinal Study of 1988 (NELS:88) Research Framework and

Issues
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field

Test Report
2000-16a Lifelong Learning NCES Task Force: Final Report Volume I
2000-16b Lifelong Learning NCES Task Force: Final Report Volume II
2001-01 Cross-National Variation in Educational Preparation for Adulthood: From Early

Adolescence to Young Adulthood

Employment after college
2001-15 Baccalaureate and Beyond Longitudinal Study: 2000/01 Follow-Up Field Test

Methodology Report

Engineering
2000-11 Financial Aid Profile of Graduate Students in Science and Engineering

Enrollment after college
2001-15 Baccalaureate and Beyond Longitudinal Study: 2000/01 Follow-Up Field Test

Methodology Report

Faculty higher education
97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists

2000-01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Fathers role in education
2001-02 Measuring Father Involvement in Young Children's Lives: Recommendations for a

Fatherhood Module for the ECLS-B

Finance elementary and secondary schools
94-05 Cost-of-Education Differentials Across the States
96-19 Assessment and Analysis of School-Level Expenditures
98-01 Collection of Public School Expenditure Data: Development of a Questionnaire

1999-07 Collection of Resource and Expenditure Data on the Schools and Staffing Survey
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No. Title
1999-16 Measuring Resources in Education: From Accounting to the Resource Cost Model

Approach
2000-18 Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire
2001-14 Evaluation of the Common Core of Data (CCD) Finance Data Imputations

Finance postsecondary
97-27 Pilot Test of IPEDS Finance Survey

2000-14 IPEDS Finance Data Comparisons Under the 1997 Financial Accounting Standards for
Private, Not-for-Profit Institutes: A Concept Paper

Finance private schools
95-17 Estimates of Expenditures for Private K-12 Schools
96-16 Strategies for Collecting Finance Data from Private Schools
97-07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary

Schools: An Exploratory Analysis
97-22 Collection of Private School Finance Data: Development of a Questionnaire

1999-07 Collection of Resource and Expenditure Data on the Schools and Staffing Survey
2000-15 Feasibility Report: School-Level Finance Pretest, Private School Questionnaire

Geography
98-04 Geographic Variations in Public Schools' Costs

Graduate students
2000-11 Financial Aid Profile of Graduate Students in Science and Engineering

Graduates of postsecondary education
2001-15 Baccalaureate and Beyond Longitudinal Study: 2000/01 Follow-Up Field Test

Methodology Report

Imputation
2000-04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and

1999 AAPOR Meeting
2001-10 Comparison of Proc Impute and Schafer's Multiple Imputation Software
2001-14 Evaluation of the Common Core of Data (CCD) Finance Data Imputations
2001-16 Imputation of Test Scores in the National Education Longitudinal Study of 1988
2001-17 A Study of Imputation Algorithms

Inflation
97-43 Measuring Inflation in Public School Costs

Institution data
2000-01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Instructional resources and practices
95-11 Measuring Instruction, Curriculum Content, and Instructional Resources: The Status of

Recent Work
1999-08 Measuring Classroom Instructional Processes: Using Survey and Case Study Field Test

Results to Improve Item Construction

International comparisons
97-11 International Comparisons of Inservice Professional Development
97-16 International Education Expenditure Comparability Study: Final Report, Volume I
97-17 International Education Expenditure Comparability Study: Final Report, Volume II,

Quantitative Analysis of Expenditure Comparability
2001-01 Cross-National Variation in Educational Preparation for Adulthood: From Early

Adolescence to Young Adulthood
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)
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International comparisons math and science achievement
2001-05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics

Libraries
94-07 Data Comparability and Public Policy: New Interest in Public Library Data Papers

Presented at Meetings of the American Statistical Association
97-25 1996 National Household Education Survey (NHES:96) Questionnaires:

Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Youth Civic Involvement, and Adult Civic Involvement

Limited English Proficiency
95-13 Assessing Students with Disabilities and Limited English Proficiency

2001-11 Impact of Selected Background Variables on Students' NAEP Math Performance
2001-13 The Effects of Accommodations on the Assessment of LEP Students in NAEP

Literacy of adults
98-17 Developing the National Assessment of Adult Literacy: Recommendations from

Stakeholders
1999-09a 1992 National Adult Literacy Survey: An Overview
1999-09b 1992 National Adult Literacy Survey: Sample Design
1999-09c 1992 National Adult Literacy Survey: Weighting and Population Estimates
1999-09d 1992 National Adult Literacy Survey: Development of the Survey Instruments
1999-09e 1992 National Adult Literacy Survey: Scaling and Proficiency Estimates
1999-09f 1992 National Adult Literacy Survey: Interpreting the Adult Literacy Scales and Literacy

Levels
1999-09g 1992 National Adult Literacy Survey: Literacy Levels and the Response Probability

Convention
1999-11 Data Sources on Lifelong Learning Available from the National Center for Education

Statistics
2000-05 Secondary Statistical Modeling With the National Assessment of Adult Literacy:

Implications for the Design of the Background Questionnaire
2000-06 Using Telephone and Mail Surveys as a Supplement or Alternative to Door-to-Door

Surveys in the Assessment of Adult Literacy
2000-07 "How Much Literacy is Enough?" Issues in Defining and Reporting Performance

Standards for the National Assessment of Adult Literacy
2000-08 Evaluation of the 1992 NALS Background Survey Questionnaire: An Analysis of Uses

with Recommendations for Revisions
2000-09 Demographic Changes and Literacy Development in a Decade
2001-08 Assessing the Lexile Framework: Results of a Panel Meeting

Literacy of adults international
97-33 Adult Literacy: An International Perspective

Mathematics
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in

Mathematics for High School GraduatesAn Examination of Data from the National
Education Longitudinal Study of 1988

1999-08 Measuring Classroom Instructional Processes: Using Survey and Case Study Field Test
Results to Improve Item Construction

2001-05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

2001-11 Impact of Selected Background Variables on Students' NAEP Math Performance

Parental involvement in education
96-03 National Education Longitudinal Study of 1988 (NELS:88) Research Framework and

Issues
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97-25 1996 National Household Education Survey (NHES:96) Questionnaires:

Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Youth Civic Involvement, and Adult Civic Involvement

1999-01 A Birth Cohort Study: Conceptual and Design Considerations and Rationale
2001-06 Papers from the Early'Childhood Longitudinal Studies Program: Presented at the 2001

AERA and SRCD Meetings

Participation rates
98-10 Adult Education Participation Decisions and Barriers: Review of Conceptual Frameworks

and Empirical Studies

Postsecondary education
1999-11 Data Sources on Lifelong Learning Available from the National Center for Education

Statistics
2000-16a Lifelong Learning NCES Task Force: Final Report Volume I
2000-16b Lifelong Learning NCES Task Force: Final Report Volume II

Postsecondary education persistence and attainment
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field

Test Report
1999-15 Projected Postsecondary Outcomes of 1992 High School Graduates

Postsecondary education staff
97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists

2000-01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Principals
2000-10 A Research Agenda for the 1999-2000 Schools and Staffing Survey

Private schools
96-16 Strategies for Collecting Finance Data from Private Schools
97-07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary

Schools: An Exploratory Analysis
97-22 Collection of Private School Finance Data: Development of a Questionnaire

2000-13 Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of
Data (CCD)

2000-15 Feasibility Report: School-Level Finance Pretest, Private School Questionnaire

Projections of education statistics
1999-15 Projected Postsecondary Outcomes of 1992 High School Graduates

Public school finance
1999-16 Measuring Resources in Education: From Accounting to the Resource Cost Model

App roach
2000-18 Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire

Public schools
97-43 Measuring Inflation in Public School Costs
98-01 Collection of Public School Expenditure Data: Development of a Questionnaire
98-04 Geographic Variations in Public Schools' Costs

1999-02 Tracking Secondary Use of the Schools and Staffing Survey Data: Preliminary Results
2000-12 Coverage Evaluation of the 1994-95 Public Elementary/Secondary School Universe

Survey
2000-13 Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of

Data (CCD)
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Public schools secondary
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in

Mathematics for High School GraduatesAn Examination of Data from the National
Education Longitudinal Study of 1988

Reform, educational
96-03 National Education Longitudinal Study of 1988 (NELS:88) Research Framework and

Issues

Response rates
98-02 Response Variance in the 1993-94 Schools and Staffing Survey: A Reinterview Report

School districts
2000-10 A Research Agenda for the 1999-2000 Schools and Staffing Survey

School districts, public
98-07 Decennial Census School District Project Planning Report

1999-03 Evaluation of the 1996-97 Nonfiscal Common Core of Data Surveys Data Collection,
Processing, and Editing Cycle

School districts, public demographics of
96-04 Census Mapping Project/School District Data Book

Schools
97-42 Improving the Measurement of Staffing Resources at the School Level: The Development

of Recommendations for NCES for the Schools and Staffing Survey (SASS)
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper

1999-03 Evaluation of the 1996-97 Nonfiscal Common Core of Data Surveys Data Collection,
Processing, and Editing Cycle

2000-10 A Research Agenda for the 1999-2000 Schools and Staffing Survey

Schools safety and discipline
97-09 Status of Data on Crime and Violence in Schools: Final Report

Science
2000-11 Financial Aid Profile of Graduate Students in Science and Engineering
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

Software evaluation
2000-03 Strengths and Limitations of Using SUDAAN, Stata, and WesVarPC for Computing

Variances from NCES Data Sets

Staff
97-42 Improving the Measurement of Staffing Resources at the School Level: The Development

of Recommendations for NCES for the Schools and Staffing Survey (SASS)
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper

Staff higher education institutions
97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists

Staff nonprofessional
2000-13 Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of

Data (CCD)
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State
1999-03 Evaluation of the 1996-97 Nonfiscal Common Core of Data Surveys Data Collection,

Processing, and Editing Cycle

Statistical methodology
97-21 Statistics for Policymakers or Everything You Wanted to Know About Statistics But

Thought You Could Never Understand

Statistical standards and methodology
2001-05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics

Students with disabilities
95-13 Assessing Students with Disabilities and Limited English Proficiency

2001-13 The Effects of Accommodations on the Assessment of LEP Students in NAEP

Survey methodology
96-17 National Postsecondary Student Aid Study: 1996 Field Test Methodology Report
97-15 Customer Service Survey: Common Core of Data Coordinators
97-35 Design, Data Collection, Interview Administration Time, and Data Editing in the 1996

National Household Education Survey
98-06 National Education Longitudinal Study of 1988 (NELS:88) Base Year through Second

Follow-Up: Final Methodology Report
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field

Test Report
98-16 A Feasibility Study of Longitudinal Design for Schools and Staffing Survey

1999-07 Collection of Resource and Expenditure Data on the Schools and Staffing Survey
1999-17 Secondary Use of the Schools and Staffing Survey Data
2000-01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report
2000-02 Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps
2000-04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and

1999 AAPOR Meetings
2000-12 Coverage Evaluation of the 1994-95 Public Elementary/Secondary School Universe

Survey
2000-17 National Postsecondary Student Aid Study:2000 Field Test Methodology Report
2001-04 Beginning Postsecondary Students Longitudinal Study: 1996-2001 (BPS:1996/2001)

Field Test Methodology Report
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

2001-09 An Assessment of the Accuracy of CCD Data: A Comparison of 1988,1989, and 1990
CCD Data with 1990-91 SASS Data

2001-11 Impact of Selected Background Variables on Students' NAEP Math Performance
2001-13 The Effects of Accommodations on the Assessment of LEP Students in NAEP

Teachers
98-13

1999-14
2000-10

Response Variance in the 1994-95 Teacher Follow-up Survey
1994-95 Teacher Followup Survey: Data File User's Manual, Restricted-Use Codebook
A Research Agenda for the 1999-2000 Schools and Staffing Survey

Teachers instructional practices of
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper

Teachers opinions regarding safety
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper

Teachers performance evaluations
1999-04 Measuring Teacher Qualifications
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Teachers qualifications of
1999-04 Measuring Teacher Qualifications Dan Kasprzyk

Teachers salaries of
94-05 Cost-of-Education Differentials Across the States William J. Fowler, Jr.

Training
2000-16a Lifelong Learning NCES Task Force: Final Report Volume I
2000-16b Lifelong Learning NCES Task Force: Final Report Volume II

Lisa Hudson
Lisa Hudson

Variance estimation
2000-03 Strengths and Limitations of Using SUDAAN, Stata, and WesVarPC for Computing Ralph Lee

Variances from NCES Data Sets
2000-04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and Dan Kasprzyk

1999 AAPOR Meetings

Violence
97-09 Status of Data on Crime and Violence in Schools: Final Report Lee Hoffman

Vocational education
95-12 Rural Education Data User's Guide Samuel Peng

1999-05 Procedures Guide for Transcript Studies Dawn Nelson
1999-06 1998 Revision of the Secondary School Taxonomy Dawn Nelson
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